Skip to main content
Log in

Comparison of IP-based and explicit paths for one-to-one fast reroute in MPLS networks

Telecommunication Systems Aims and scope Submit manuscript

Abstract

Primary and backup paths in MPLS fast reroute (FRR) may be established as shortest paths according to the administrative link costs of the IP control plane, or as explicitly calculated arbitrary paths. In both cases, the path layout can be optimized so that the maximum link utilization for a specific traffic matrix and for a set of considered failure scenarios is minimized. In this paper, we propose a linear program for the optimization of the path layout for explicitly calculated paths, which can either produce single paths and route entire traffic along those paths, or generate multiple paths and spread the traffic among those paths providing load balancing. We compare the resulting lowest maximum link utilization in both cases with the lowest maximum link utilization that can be obtained by optimizing unique IP-based paths. Our results quantify the gain in resource efficiency usage provided by optimized explicit multiple paths or explicit single paths as compared to optimized IP-based paths. Furthermore, we investigate if explicit path layouts cause an increased configuration effort compared to IP-based layouts and if yes, to what extend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Pióro, M., Tomaszewski, A., Żukowski, C., Hock, D., Hartmann, M., & Menth, M. (2010). Optimized IP-Based vs. Explicit Paths for One-to-One Backup in MPLS Fast Reroute. In 14th international telecommunications network strategy and planning symposium, Warsaw, Poland, Sep., 2010.

    Google Scholar 

  2. Farrel, A., Vasseur, J.-P., & Ash, J. (2006). RFC4655: A Path Computation Element (PCE)-Based Architecture, Aug., 2006.

  3. Pióro, M., Szentesi, Á., Harmatos, J., Jüttner, A., Gajowniczek, P., & Kozdrowski, S. (2002). On open shortest path first related network optimisation problems. Performance Evaluation, 48, 201–223.

    Article  Google Scholar 

  4. Menth, M., Hartmann, M., & Martin, R. (2007). Robust IP link costs for multilayer resilience. In IFIP-TC6 networking conference (Networking), Atlanta, GA, USA, May, 2007.

    Google Scholar 

  5. Hock, D., Hartmann, M., Menth, M., & Schwartz, C. (2010). Optimizing unique shortest paths for resilient routing and fast reroute in IP-based networks. In IEEE network operations and management symposium (NOMS), Osaka, Japan, Apr., 2010.

    Google Scholar 

  6. Menth, M., Martin, R., Hartmann, M., & Spoerlein, U. (2010). Efficiency of routing and resilience mechanisms in packet-switched communication networks. European Transactions on Telecommunications (ETT), 21(2). doi:10.1002/ett.1379.

  7. Hartmann, M., Hock, D., Schwartz, C., & Menth, M. (2009). Objective functions for optimization for resilient and non-resilient IP routing. In 7th international workshop on design of reliable communication networks (DRCN), Washington, DC, USA, Oct., 2009.

    Google Scholar 

  8. Pióro, M., & Medhi, D. (2004). Routing, flow, and capacity design in communication and computer networks. San Francisco: Morgan Kaufman.

    Google Scholar 

  9. Orlowski, S., & Pióro, M. (2009). On the complexity of column generation in survivable network design with path-based survivability mechanisms. In International network optimization conference (INOC).

    Google Scholar 

  10. Batchelor, P., et al. (1999). Ultra high capacity optical transmission networks (Final Report of Action COST 239), Jan., 1999.

  11. The GEANT website (2008). http://www.geant.net/.

  12. Menth, M. (2004). Efficient admission control and routing in resilient communication networks. PhD thesis, University of Würzburg, Faculty of Computer Science, July, 2004.

  13. Spring, N., Mahajan, R., & Wetherall, D. (2002). Measuring ISP topologies with Rocketfuel. In ACM SIGCOMM, Pittsburgh, PA, Aug., 2002.

    Google Scholar 

  14. Nucci, A., Sridharan, A., & Taft, N. (2005). The problem of synthetically generating IP traffic matrices: initial recommendations. Computer Communication Review, 35(3), 19–32.

    Article  Google Scholar 

  15. Roughan, M. (2005). Simplifying the synthesis of Internet traffic matrices. Computer Communication Review, 35(5), 93–96.

    Article  Google Scholar 

  16. Martin, R., & Menth, M. (2006). Backup capacity requirements for MPLS fast reroute. In 7th ITG workshop on photonic networks, Leipzig, Germany, Apr., 2006 (pp. 95–102).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Hock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hock, D., Hartmann, M., Menth, M. et al. Comparison of IP-based and explicit paths for one-to-one fast reroute in MPLS networks. Telecommun Syst 52, 947–958 (2013). https://doi.org/10.1007/s11235-011-9603-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-011-9603-4

Keywords

Navigation