Skip to main content
Log in

On autoregressive model order for long-range prediction of fast fading wireless channel

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Long-range prediction of fading wireless channel quality is considered to be one of the most important techniques for high speed wireless communication systems. For example, to enable an efficient adaptive transmission, channel state has to be predicted several symbols ahead to compensate for delay in the feedback loop and adaptation rate limitations. Autoregressive model based linear predictor is addressed in this paper, in particular an impact of predictor order on prediction accuracy for various fading scenarios is investigated. The results show that memory length is an important factor that affects channel state prediction accuracy especially for fast fading channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Catreux, S., Erceg, V., Gesbert, D., & Heath, R. W. Jr. (2002). Adaptive modulation and MIMO coding for broadband wireless data networks. IEEE Communications Magazine, 40(6), 108–115.

    Article  Google Scholar 

  2. Alouini, M. S., & Goldsmith, A. J. (1999). Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combining techniques. IEEE Transactions on Vehicular Technology, 48(4), 1165–1181.

    Article  Google Scholar 

  3. Sternad, M., Svensson, T., Ottosson, T., Ahlen, A., Svensson, A., & Brunstrom, A. (2007). Towards systems beyond 3G based on adaptive OFDMA transmission. Proceedings of the IEEE, 95(12), 2432–2455.

    Article  Google Scholar 

  4. Duel-Hallen, A. (2007). Fading channel prediction for mobile radio adaptive transmission systems. Proceedings of the IEEE, 95(12), 2299–2313.

    Article  Google Scholar 

  5. Chen, M., Ekman, T., & Viberg, M. (2007). New approaches for channel prediction based on sinusoidal modeling. EURASIP Journal on Advances in Signal Process.

  6. Svensson, A. (2007). An introduction to adaptive QAM modulation schemes for known and predicted channels. Proceedings of the IEEE, 95(12), 2322–2336.

    Article  Google Scholar 

  7. Duel-Hallen, A., Hu, S., & Hallen, H. (2000). Long-range prediction of fading signals: Enabling adaptive transmission for mobile radio channels. IEEE Signal Processing Magazine, 17(3), 62–75.

    Article  Google Scholar 

  8. Eyceoz, T., Hu, S., & Duel-Hallen, A. (1999). Performance analysis of long range prediction for fast fading channels. In Proc. of 33rd annual conf. on inform. sciences and systems CISS’99 (pp. 656–661).

    Google Scholar 

  9. Jakes, W. C. (1974). Microwave mobile communications. New York: Wiley.

    Google Scholar 

  10. Hwang, J. K., & Winters, J. H. (1998). Sinusoidal modeling and prediction of fast fading processes. In Proc. GLOBECOM’98 (pp. 892–897).

    Google Scholar 

  11. Heidari, A., Khandani, A. K., & McAvoy, D. (2010). Adaptive modelling and long-range prediction of mobile fading channels. IET Communications, 4(1), 39–50.

    Article  Google Scholar 

  12. Semmelrodt, S., & Kattenbach, R. (2003). Investigation of different fading forecast schemes for flat fading radio channels. In Proc. IEEE VTC Fall (pp. 149–153).

    Google Scholar 

  13. Ekman, T., & Kubin, G. (1999). Nonlinear prediction of mobile radio channels: measurements and MARS model designs. In Proc. ICASSP’99 (Vol. 5, pp. 2667–2670).

    Google Scholar 

  14. Shen, Z., Andrews, J. G., & Evans, B. L. (2003). Short range wireless channel prediction using local information. In IEEE Asolimar (p. 1147–1151).

    Google Scholar 

  15. Sun, J., Zhang, T., & Liu, F. (2004). Nonlinear prediction of fast fading channel parameter based on the chaotic attractor. In IEEE 6th CAS symp. on emerging technologies: mobile and wireless comm. (pp. 282–286).

    Google Scholar 

  16. Baddour, K. E., & Beaulieu, N. C. (2005). Autoregressive modeling for fading channel simulation. IEEE Transactions on Wireless Communications, 4, 1650–1662.

    Article  Google Scholar 

  17. Orfanidis, S. J. (1988). Optimum signal processing: an introduction. New York: McGraw-Hill.

    Google Scholar 

  18. Lindbom, L., Ahlen, A., Sternad, M., & Falkenstrom, M. (2002). Tracking of time varying mobile radio channels. II: a case study. IEEE Transactions on Communications, 50, 156–167.

    Article  Google Scholar 

  19. Eyceoz, T., Duel-Hallen, A., & Hallen, H. (1998). Using the physics of the fast fading to improve performance for mobile radio channels. In Proc. IEEE int. symp. on information theory (pp. 159).

    Google Scholar 

  20. http://wwwcs.upb.de/cs/chsim. Accessed 12 November 2010.

  21. Valentin, S. (2006). ChSim—a wireless channel simulator for OMNeT++. TKN Simulation Workshop, Tech. Univ. Berlin, Germany. http://www.cs.uni-paderborn.de/fileadmin/Informatik/AG-Karl/projects/chsim/ChSim-introduction-tkn-09-2006.pdf. Accessed 12 November 2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darina Jarinová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarinová, D. On autoregressive model order for long-range prediction of fast fading wireless channel. Telecommun Syst 52, 1533–1539 (2013). https://doi.org/10.1007/s11235-011-9520-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-011-9520-6

Keywords

Navigation