Skip to main content
Log in

The Aharonov-Bohm effect for massless Dirac fermions and the spectral flow of Dirac-type operators with classical boundary conditions

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

In topological terms, we compute the spectral flow of an arbitrary family of self-adjoint Dirac-type operators with classical (local) boundary conditions on a compact Riemannian manifold with boundary under the assumption that the initial and terminal operators of the family are conjugate by an automorphism of the bundle in which the operators act. We use this result to study conditions for the existence of a nonzero spectral flow of a family of self-adjoint Dirac-type operators with local boundary conditions in a two-dimensional domain with a nontrivial topology and discuss possible physical realizations of a nonzero spectral flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. D. Mermin, Rev. Modern Phys., 51, 591–648 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  2. D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett., 49, 405–408 (1982).

    Article  ADS  Google Scholar 

  3. J. Bellisard, A. van Elst, and H. Schulz-Baldes, J. Math. Phys., 35, 5373–5451 (1994); arXiv:cond-mat/9411052v1 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  4. F. Wilczek, Fractional Statistics and Anyon Superconductivity, World Scientific, Singapore (1990).

    Google Scholar 

  5. G. E. Volovik, The Universe in a Helium Droplet (Internat. Series Monogr. Phys., Vol. 117), Oxford Univ. Press, Oxford (2003).

    MATH  Google Scholar 

  6. M. A. H. Vozmediano, M. I. Katsnelson, and F. Guinea, Phys. Rep., 496, 109–148 (2010); arXiv:1003.5179v2 [cond-mat.mes-hall] (2010).

    Article  MathSciNet  ADS  Google Scholar 

  7. M. I. Katsnelson, Graphene: Carbon in Two Dimensions, Cambridge Univ. Press, Cambridge (2012).

    Book  Google Scholar 

  8. M. Z. Hasan and C. L. Kane, Rev. Modern Phys., 82, 3045–3067 (2010); arXiv:1002.3895v2 [cond-mat.mes-hall] (2010).

    Article  ADS  Google Scholar 

  9. X.-L. Qi and S.-C. Zhang, Rev. Modern Phys., 83, 1057–1110 (2011).

    Article  ADS  Google Scholar 

  10. M. F. Atiyah and I. M. Singer, Bull. Amer. Math. Soc., 69, 422–433 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  11. N. B. Kopnin, Rep. Prog. Phys., 65, 1633–1678 (2002).

    Article  ADS  Google Scholar 

  12. Y. Aharonov and D. Bohm, Phys. Rev., 115, 485–491 (1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. S. Olariu and I. I. Popescu, Rev. Modern Phys., 57, 339–436 (1985).

    Article  ADS  Google Scholar 

  14. Y. Avishai, Y. Hatsugai, and M. Kohmoto, Phys. Rev. B, 47, 9501–9512 (1993).

    Article  ADS  Google Scholar 

  15. P. Recher, B. Trauzettel, A. Rycerz, Ya. M. Blanter, C. W. J. Beenakker, and A. F. Morpurgo, Phys. Rev. B, 76, 235404 (2007).

    Article  ADS  Google Scholar 

  16. R. Jackiw, A. I. Milstein, S.-Y. Pi, and I. S. Terekhov, Phys. Rev. B, 80, 033413 (2009); arXiv:0904.2046v3 [cond-mat.mes-hall] (2009).

    Article  ADS  Google Scholar 

  17. M. I. Katsnelson, Europhys. Lett., 89, 17001 (2010); arXiv:0911.3263v1 [cond-mat.mes-hall] (2009).

    Article  ADS  Google Scholar 

  18. M. F. Atiyah, V. K. Patodi, and I. M. Singer, Math. Proc. Cambridge Philos. Soc., 79, 71–99 (1976).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. M. Berry and R. J. Mondragon, Proc. Roy. Soc. London A, 412, 53–74 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  20. M. Prokhorova, “The spectral flow for Dirac operators on compact planar domains with local boundary conditions,” Preprint No. 76, Max Planck Inst. Math., Bonn (2011); arXiv:1108.0806v3 [math-ph] (2011).

  21. M. F. Atiyah and R. Bott, “The index problem for manifolds with boundary,” in: Proc. Bombay Colloquium on Differential Analysis (Bombay, India, 7–14 January 1964), Oxford Univ. Press, Oxford (1964), pp. 175–186.

    Google Scholar 

  22. L. Hörmander, The Analysis of Linear Partial Differential Operators III (Grundlehren Math. Wiss., Vol. 274), Springer, Berlin (1985).

    MATH  Google Scholar 

  23. V. E. Nazaikinskii and B. Yu. Sternin, Dokl. Math., 61, 13–16.

  24. V. E. Nazaikinskii and B. Yu. Sternin, Funct. Anal. Appl., 35, No. 2, 111–123 (2001).

    Article  MathSciNet  Google Scholar 

  25. V. Nazaikinskii and B. Sternin, Abstr. Appl. Anal., 2006, 98081 (2006).

    Article  MathSciNet  Google Scholar 

  26. V. E. Nazaikinskii, A. Savin, B.-W. Schulze, and B. Sternin, Elliptic Theory on Singular Manifolds (Differential Integral Equat. Their Appl., Vol. 7), CRC Press, Boca Raton, Fla. (2006).

    MATH  Google Scholar 

  27. B. Boo-Bavnbek, M. Lesch, and J. Phillips, Canad. J. Math., 57, 225–250 (2005).

    Article  MathSciNet  Google Scholar 

  28. B. BooElliptic Boundary Problems for Dirac Operators, Birkhäuser, Boston, Mass. (1993).

  29. J. Brüning and M. Lesch, J. Funct. Anal., 185, 1–62 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  30. B. Boo J. Geom. Phys., 59, 784–826 (2009); arXiv:0803.4160v3 [math.DG] (2008).

    Article  MathSciNet  ADS  Google Scholar 

  31. A. R. Akhmerov and C. W. J. Beenakker, Phys. Rev. B, 77, 085423 (2008); arXiv:0710.2723v3 [cond-mat.meshall] (2007).

    Article  ADS  Google Scholar 

  32. D. W. Boukhvalov and M. I. Katsnelson, Nano Lett., 8, 4373–4379 (2008); arXiv:0807.3855v2 [cond-mat.mtrlsci] (2008).

    Article  ADS  Google Scholar 

  33. B. Büttner, C. X. Liu, G. Tkachov, E. G. Novik, C. Brune, H. Buhmann, E. M. Hankiewicz, P. Recher, B. Trauzettel, S. C. Zhang, and L. W. Molenkamp, Nature Physics, 7, 418–422 (2011); arXiv:1009.2248v2 [cond-mat.mes-hall] (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Katsnelson.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 172, No. 3, pp. 437–453, September, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katsnelson, M.I., Nazaikinskii, V.E. The Aharonov-Bohm effect for massless Dirac fermions and the spectral flow of Dirac-type operators with classical boundary conditions. Theor Math Phys 172, 1263–1277 (2012). https://doi.org/10.1007/s11232-012-0112-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-012-0112-8

Keywords

Navigation