Skip to main content
Log in

Quantized Riemann surfaces and semiclassical spectral series for a non-self-adjoint Schrödinger operator with periodic coefficients

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a non-self-adjoint Schrödinger operator describing the motion of a particle in a one-dimensional space with an analytic potential iV (x) that is periodic with a real period T and is purely imaginary on the real axis. We study the spectrum of this operator in the semiclassical limit and show that the points of its spectrum asymptotically belong to the so-called spectral graph. We construct the spectral graph and evaluate the asymptotic form of the spectrum. A Riemann surface of the particle energy-conservation equation can be constructed in the phase space. We show that both the spectral graph and the asymptotic form of the spectrum can be evaluated in terms of integrals of the pdx form (where x ∈31 ℂ/Tℤ and p ∈, ℂ are the particle coordinate and momentum) taken along basis cycles on this Riemann surface. We use the technique of Stokes lines to construct the asymptotic form of the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators [in Russian], Nauka, Moscow (1965); English transl. (Transl. Math. Mono., Vol. 18), Amer. Math. Soc., Providence, R. I. (1969).

    MATH  Google Scholar 

  2. Ya. B. Zel’dovich and A. A. Ruzmaikin, Usp. Fiz. Nauk, 152, 263–284 (1987).

    Google Scholar 

  3. R. G. Drazin and W. H. Reid, Hydrodynamic Stability, Cambridge Univ. Press, Cambridge (1981).

    Google Scholar 

  4. V. P. Maslov, Perturbation Theory and Asymptotic Methods [in Russian], MSU Publ., Moscow (1965); French transl.: Theorie des perturbations et methodes asymptotiques, Dunod, Paris (1972); Asymptotic Methods for Solution of Pseudodifferential Equations [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  5. S. Yu. Dobrokhotov, V. N. Kolokoltsov, and V. Martinez Olive, “Quasimodes of the diffusion operator −εΔ + v(x) · ∇, corresponding to asymptotically stable limit cycles of the field v,” in: III Simposio de Probabilidad y Procesos Estocásticos: Memorias, Hermosillo, México 1994 (M. E. Caballero and L. G. Gorostiza, eds.) (Aportaciones Mat., Notas Invest., Vol. 11), Sociedad Matematica Mexicana, Mexico, D. F. (1994), pp. 81–84; Math. Notes, 58, 880–884 (1995).

    Google Scholar 

  6. L. N. Trefethen, “Pseudospectra of linear operators,” in: ICIAM 95: Proc. 3rd Intl. Congress of Industrial and Applied Mathematics held in Hamburg, Germany, July 3–7, 1995 (Mat. Res., Vol. 87, K. Kirchgassner, O. Mahrenholtz, and R. Mennicken, eds.), Akademie Verlag, Berlin (1996), pp. 401–434; E. B. Davies, J. Oper. Theory, 43, 243–262 (2000).

    Google Scholar 

  7. S. A. Stepin, Sb. Math., 188, 137–156 (1997); S. A. Stepin and A. A. Arzhanov, Russ. Math. Surveys, 57, 608–610 (2002); A. A. Shkalikov, Math. Notes, 62, 796–799 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  8. S. N. Tumanov and A. A. Shkalikov, Izv. Math., 66, 829–856 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  9. Yu. N. Dnestrovskii and D. P. Kostomarov, Sov. Math. Dokl., 4, 1224–1226 (1964).

    MathSciNet  Google Scholar 

  10. M. V. Fedoryuk, Izv. Akad. Nauk SSSR, Ser. Mat., 29, 645–656 (1965).

    MATH  MathSciNet  Google Scholar 

  11. M. A. Evgrafov and M. V. Fedoryuk, Usp. Mat. Nauk, 21, 3–50 (1966).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 148, No. 2, pp. 206–226, August, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galtsev, S.V., Shafarevich, A.I. Quantized Riemann surfaces and semiclassical spectral series for a non-self-adjoint Schrödinger operator with periodic coefficients. Theor Math Phys 148, 1049–1066 (2006). https://doi.org/10.1007/s11232-006-0100-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-006-0100-y

Keywords

Navigation