Skip to main content
Log in

Construction of Pathological Maximally Monotone Operators on Non-reflexive Banach Spaces

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

In this paper, we construct maximally monotone operators that are not of Gossez’s dense-type (D) in many nonreflexive spaces. Many of these operators also fail to possess the Brønsted-Rockafellar (BR) property. Using these operators, we show that the partial inf-convolution of two BC–functions will not always be a BC–function. This provides a negative answer to a challenging question posed by Stephen Simons. Among other consequences, we deduce—in a uniform fashion—that every Banach space which contains an isomorphic copy of the James space \({\ensuremath{\mathbf{J}}}\) or its dual \({\ensuremath{\mathbf{J}}}^{\ast}\), or c 0 or its dual ℓ1, admits a non type (D) operator. The existence of non type (D) operators in spaces containing ℓ1 or c 0 has been proved recently by Bueno and Svaiter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauschke H.H.: Projection algorithms and monotone operators. PhD thesis, Simon Fraser University, Department of Mathematics, Burnaby, British Columbia V5A 1S6, Canada. Available at http://www.cecm.sfu.ca/preprints/1996pp.html (1996)

  2. Bauschke H.H., Borwein, J.M.: Maximal monotonicity of dense type, local maximal monotonicity, and monotonicity of the conjugate are all the same for continuousi linear operators. Pac. J. Math. 189, 1–20 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauschke H.H., Wang, X., Yao, L.: Examples of discontinuous maximal monotone linear operators and the solution to a recent problem posed by B.F. Svaiter. J. Math. Anal. Appl. 370, 224–241 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauschke H.H., Borwein, J.M., Wang, X., Yao, L.: For maximally monotone linear relations, dense type, negative-infimum type, and Fitzpatrick–Phelps type all coincide with monotonicity of the adjoint. arXiv:1103.6239v1 (2011)

  5. Bauschke H.H., Borwein, J.M., Wang, X., Yao, L.: Every maximally monotone operator of Fitzpatrick–Phelps type is actually of dense type. Optim. Lett. arXiv:1104.0750v1 (2011)

  6. Bauschke H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer (2011)

  7. Borwein, J.M.: Maximal monotonicity via convex analysis. J. Convex Anal. 13, 561–586 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Borwein, J.M.: Maximality of sums of two maximal monotone operators in general Banach space. Proc. Am. Math. Soc. 135, 3917–3924 (2007)

    Article  MATH  Google Scholar 

  9. Borwein, J.M.: Fifty years of maximal monotonicity. Optim. Lett. 4, 473–490 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Borwein, J.M.: A note on ε-subgradients and maximal monotonicity. Pac. J. Math. 103, 307–314 (1982)

    MATH  Google Scholar 

  11. Borwein, J.M., Vanderwerff, J.D.: Convex Functions. Cambridge University Press (2010)

  12. Bueno, O., Svaiter, B.F.: A non-type (D) operator in c 0. http://www.preprint.impa.br/Shadows/SERIE_A/2011/703.html, arXiv:1103.2349v1 (2011)

  13. Burachik, R.S., Iusem, A.N.: Set-Valued Mappings and Enlargements of Monotone Operators. Springer (2008)

  14. Cross, R.: Multivalued Linear Operators. Marcel Dekker (1998)

  15. Fabian, M., Habala, P., Hájek, P., Montesinos, V., Pelant, S.J., Zizler, V.: Functional Analysis and Infinite-Dimensional Geometry. CMS/Springer (2001)

  16. Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V.: Banach Space Theory. CMS/Springer (2010)

  17. Fitzpatrick, S.: Representing monotone operators by convex functions. In: Workshop/Miniconference on Functional Analysis and Optimization (Canberra 1988). Proceedings of the Centre for Mathematical Analysis, vol. 20, pp. 59–65. Australian National University, Canberra, Australia (1988)

    Google Scholar 

  18. Fitzpatrick, S., Phelps, R.R.: Bounded approximants to monotone operators on Banach spaces. Ann. Inst. H. Poincaré Anal. Non Linéaire 9, 573–595 (1992)

    MathSciNet  MATH  Google Scholar 

  19. Gossez, J.-P.: Opérateurs monotones non linéaires dans les espaces de Banach non réflexifs. J. Math. Anal. Appl. 34, 371–395 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gossez, J.-P.: On the range of a coercive maximal monotone operator in a nonreflexive Banach space. Proc. Am. Math. Soc. 35, 88–92 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gowers, W.T.: A Banach space not containing c 0, l 1 or a reflexive subspace. Trans. Am. Math. Soc. 344, 407–420 (1994)

    MathSciNet  MATH  Google Scholar 

  22. Marques Alves, M., Svaiter, B.F.: A new proof for maximal monotonicity of subdifferential operators. J. Convex Anal. 15, 345–348 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Marques Alves, M., Svaiter, B.F.: Brøndsted–Rockafellar property and maximality of monotone operators representable by convex functions in non-reflexive Banach spaces. J. Convex Anal. 15, 693–706 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Marques Alves, M., Svaiter, B.F.: Maximal monotone operators with a unique extension to the bidual. J. Convex Anal. 16, 409–421 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Marques Alves, M., Svaiter, B.F.: On Gossez type (D) maximal monotone operators. J. Convex Anal. 17, 1077–1088 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Megginson, R.E.: An Introduction to Banach Space Theory. Springer (1998)

  27. Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability, 2nd edn. Springer (1993)

  28. Phelps, R.R.: Lectures on maximal monotone operators. Extracta Math. 12, 193–230 (1997). arXiv:9302209v1. Accessed February 1993

    MathSciNet  MATH  Google Scholar 

  29. Phelps, R.R., Simons, S.: Unbounded linear monotone operators on nonreflexive Banach spaces. J. Convex Anal. 5, 303–328 (1998)

    MathSciNet  MATH  Google Scholar 

  30. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33, 209–216 (1970)

    MathSciNet  MATH  Google Scholar 

  31. Rockafellar, R.T., Wets, R.J-B.: Variational Analysis, 3rd printing. Springer (2009)

  32. Simons, S.: The range of a monotone operator. J. Math. Anal. Appl. 199, 176–201 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Simons, S.: Minimax and Monotonicity. Springer (1998)

  34. Simons, S.: Maximal monotone multifunctions of Brøndsted–Rockafellar type. Set-Valued Anal. 7, 255–294 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Simons, S.: Five kinds of maximal monotonicity. Set-Valued Anal. 9, 391–409 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Simons, S.: From Hahn–Banach to Monotonicity. Springer (2008)

  37. Simons, S.: Banach SSD spaces and classes of monotone sets. J. Convex Anal. 18, 227–258 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Simons, S., Zǎlinescu, C.: Fenchel duality, Fitzpatrick functions and maximal monotonicity. J. Nonlinear Convex Anal. 6, 1–22 (2005)

    MathSciNet  MATH  Google Scholar 

  39. Voisei, M.D., Zălinescu, C.: Linear monotone subspaces of locally convex spaces. Set-Valued Anal. 18, 29–55 (2010)

    Article  MATH  Google Scholar 

  40. Yao, L.: The sum of a maximal monotone operator of type (FPV) and a maximal monotone operator with full domain is maximally monotone. Nonlinear Anal. 74, 6144–6152 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yao, L.: The sum of a maximally monotone linear relation and the subdifferential of a proper lower semicontinuous convex function is maximally monotone. Set-Valued Anal. (2011). doi:10.1007/s11228-011-0184-x

    Google Scholar 

  42. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Borwein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauschke, H.H., Borwein, J.M., Wang, X. et al. Construction of Pathological Maximally Monotone Operators on Non-reflexive Banach Spaces. Set-Valued Var. Anal 20, 387–415 (2012). https://doi.org/10.1007/s11228-012-0209-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-012-0209-0

Keywords

Mathematics Subject Classifications (2010)

Navigation