Skip to main content
Log in

Regularity of Solution Maps of Differential Inclusions Under State Constraints

  • Published:
Set-Valued Analysis Aims and scope Submit manuscript

Abstract

Consider a differential inclusion under state constraints

$$x'(t) \in F(t,x(t)), \; x(t) \in K,$$

where \(F\) is an unbounded set-valued map with closed and convex images, which is measurable in \(t\) and \(k(t)\)-Lipschitz in \(x\) (with \(k(\cdot)\in L^1\)) and \(K\subset\mathbb{R}^{n}\) is a closed set with smooth boundary. We provide sufficient conditions for the set-valued map \(\xi_0 \leadsto {\cal S}^K_{[t_0,T\,]}(\xi_0)\) associating to each initial point \(\xi_0 \in K\) the set of all solutions to the above constrained differential inclusion starting at \(\xi_0\) to be pseudo-Lipschitz on \(K\). This result is applied to investigate local Lipschitz continuity of the value function for the constrained Bolza problem of optimal control theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arisawa, M., Lions, P.L.: Continuity of admissible trajectories for state constraints control problems. Discrete Contin. Dynam. Systems 2, 297–305 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aubin, J.-P.: Viability Theory. Systems & Control: Foundations & Applications. Birkhäuser, Boston, (1991)

    Google Scholar 

  3. Aubin, J.-P., Cellina, A.: Differential Inclusions. Gründlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 264. Springer, Berlin Heidelberg New York (1984)

    Google Scholar 

  4. Aubin, J.-P., Ekeland, I.: Applied Nonlinear Analysis. Pure and Applied Mathematics. Wiley, New York (1984)

    Google Scholar 

  5. Aubin, J.-P., Frankowska, H.: Set-valued analysis. Systems & Control: Foundations & Applications. Birkhäuser, Boston (1990)

    Google Scholar 

  6. Bettiol, P., Cardaliaguet, P., Quincampoix, M.: Zero-sum state constrained differential games: Existence of value for Bolza problem. Int. J. Game Theory (to appear)

  7. Cannarsa, P.M., Frankowska, H.: Some characterizations of optimal trajectories in control theory. SIAM J. Control Optim. 29, 1322–1347 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Capuzzo-Dolcetta, I., Lions, P.L.: Hamilton–Jacobi equations with state constraints. Trans. Amer. Math. Soc. 318, 643–687 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cardaliaguet, P., Plaskacz, S.: Invariant solutions of differential games and Hamilton–Jacobi equations for time-measurable Hamiltonians. SIAM J. Control Optim. 38, 1501–1520 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Delfour, M.C., Zolesio, J.P.: Shape analysis via oriented distance functions. J. Funct. Anal. 123, 129–201 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Delfour, M.C., Zolesio, J.P.: Oriented distance function and its evolution equation for initial sets with thin boundary. SIAM J. Control Optim. 42, 2286–2304 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Applications of Mathematics. Springer, Berlin Heidelberg New York (1975)

    Google Scholar 

  13. Frankowska, H.: Optimal trajectories associated to a solution of contingent Hamilton–Jacobi equations. Appl. Math. Optim. 19, 291–311 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Frankowska, H., Plaskacz, S., Rzezuchowski, T.: Measurable viability theorems and the Hamilton–Jacobi–Bellman equation. J. Differential Equations 116, 265–305 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Frankowska, H., Plaskacz, S.: A measurable upper semicontinuous viability theorem for tubes. Nonlinear Anal. JMA 26, 565–582 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Frankowska, H., Rampazzo, F.: Filippov's and Filippov–Wazewski's theorems on closed domains. J. Differential Equations 161, 449–478 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Loreti, P., Tessitore, M.E.: Approximation and regularity results on constrained viscosity solutions of Hamilton–Jacobi–Bellman equations. J. Math. Systems Estim. Control 4, 467–483 (1994)

    MATH  MathSciNet  Google Scholar 

  18. Rockafellar, R.T.: Convex analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, New Jersey (1970)

  19. Soner, H.M.: Optimal control problems with state-space constraints. SIAM J. Control Optim. 24, 552–562 and 1110–1122 (1986)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Frankowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bettiol, P., Frankowska, H. Regularity of Solution Maps of Differential Inclusions Under State Constraints. Set-Valued Anal 15, 21–45 (2007). https://doi.org/10.1007/s11228-006-0018-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-006-0018-4

Key words

Mathematics Subject Classifications (2000)

Navigation