Abstract
Many-objective evolutionary algorithms have demonstrated their superiority in dealing with many-objective optimization problems. However, their performance in handling many objective optimization problems can be significantly affected due to the sensitivity on the curvature of Pareto front. This paper proposes the dynamic mating selection strategy and strengthened fitness selection mechanism to solve many objective optimization problems (MaOEA-DMSF). In MaOEA-DMSF, a dynamic mating selection strategy is proposed to select appropriate mating population, which can generate high-quality offspring with a higher probability. In addition, a strengthened fitness selection mechanism is proposed to improve convergence without deterioration in population diversity. To verify the effectiveness of the proposed MaOEA-DMSF, a series of experiments are carried out against eight state-of-the-art many-objective optimization algorithms on three widely used benchmark test suites. Experimental results demonstrate that the proposed MaOEA-DMSF has higher competitiveness compared with peer competitors.













Similar content being viewed by others
Data availability
No datasets were generated or analysed during the current study.
References
He Z, Yen GG (2016) Many-objective evolutionary algorithms based on coordinated selection strategy. IEEE Trans Evol Comput 21(2):220–233. https://doi.org/10.1109/TEVC.2016.2598687
Deng Q, Kang Q, Zhou M, Wang X, Albeshri A (2024) Activation function-assisted objective space mapping to enhance evolutionary algorithms for large-scale many-objective optimization. IEEE Trans Syst Man Cybern Syst. https://doi.org/10.1109/TSMC.2024.3454051
Cui Z, Qu C, Zhang Z, Jin Y, Cai J, Zhang W, Chen J (2024) An adaptive interval many-objective evolutionary algorithm with information entropy dominance. Swarm Evol Comput 91:101749. https://doi.org/10.1016/j.swevo.2024.101749
Yang Y, Zhang C, Liu Y, Ning J, Guo Y (2024) Deep reinforcement learning assisted novelty search in Voronoi regions for constrained multi-objective optimization. Swarm Evol Comput 91:101732. https://doi.org/10.1016/j.swevo.2024.101732
Deb K, do Val Lopes CL, Martins FVC, Wanner EF (2023) Identifying pareto fronts reliably using a multistage reference-vector-based framework. IEEE Trans Evol Comput 28(1):252–266. https://doi.org/10.1109/TEVC.2023.3246922
Suresh A, Deb K (2024) Machine learning based prediction of new Pareto-optimal solutions from pseudo-weights. IEEE Trans Evol Comput 28(5):1351–1365. https://doi.org/10.1109/TEVC.2023.3319494
Liu Y, Zhu N, Li M (2020) Solving many-objective optimization problems by a Pareto-based evolutionary algorithm with preprocessing and a penalty mechanism. IEEE Trans Cybern 51(11):5585–5594. https://doi.org/10.1109/TCYB.2020.2988896
Trivedi A, Srinivasan D, Sanyal K, Ghosh A (2016) A survey of multiobjective evolutionary algorithms based on decomposition. IEEE Trans Evol Comput 21(3):440–462. https://doi.org/10.1109/TEVC.2016.2608507
Li K, Deb K, Zhang Q, Kwong S (2014) An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans Evol Comput 19(5):694–716. https://doi.org/10.1109/TEVC.2014.2373386
Li L, Yen GG, Sahoo A, Chang L, Gu T (2021) On the estimation of pareto front and dimensional similarity in many-objective evolutionary algorithm. Inf Sci 563:375–400. https://doi.org/10.1016/j.ins.2021.03.008
Liu Y, Ishibuchi H, Masuyama N, Nojima Y (2019) Adapting reference vectors and scalarizing functions by growing neural gas to handle irregular Pareto fronts. IEEE Trans Evol Comput 24(3):439–453. https://doi.org/10.1109/TEVC.2019.2926151
Xiang Y, Zhou Y, Yang X, Huang H (2019) A many-objective evolutionary algorithm with Pareto-adaptive reference points. IEEE Transa Evol Comput 24(1):99–113. https://doi.org/10.1109/tevc.2019.2909636
Ishibuchi H, Setoguchi Y, Masuda H, Nojima Y (2016) Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes. IEEE Trans Evol Comput 21(2):169–190. https://doi.org/10.1109/TEVC.2016.2587749
Jain H, Deb K (2013) An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach. IEEE Trans Evol Comput 18(4):602–622. https://doi.org/10.1109/TEVC.2013.2281535
He Z, Yen GG, Zhang J (2013) Fuzzy-based Pareto optimality for many-objective evolutionary algorithms. IEEE Trans Evol Comput 18(2):269–285. https://doi.org/10.1109/TEVC.2013.2258025
Deb K, Mohan M, Mishra S (2005) Evaluating the ϵ-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions. Evol Comput 13(4):501–525. https://doi.org/10.1162/106365605774666895
Yang S, Li M, Liu X, Zheng J (2013) A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 17(5):721–736. https://doi.org/10.1109/TEVC.2012.2227145
Xiang Y, Zhou Y, Li M, Chen Z (2017) A vector angle-based evolutionary algorithm for unconstrained many-objective optimization. IEEE Trans Evol Comput 21(1):131–152. https://doi.org/10.1109/TEVC.2016.2587808
Zhou S, Dai Y, Chen Z (2024) Dominance relation selection and angle-based distribution evaluation for many-objective evolutionary algorithm. Swarm Evol Comput 86:101515. https://doi.org/10.1016/j.swevo.2024.101515
Palakonda V, Kang JM, Jung H (2022) An adaptive neighborhood based evolutionary algorithm with pivot-solution based selection for multi-and many-objective optimization. Inf Sci 607:126–152. https://doi.org/10.1016/j.ins.2022.05.119
Zhou J, Zou J, Yang S, Zheng J, Gong D, Pei T (2021) Niche-based and angle-based selection strategies for many-objective evolutionary optimization. Inf Sci 571:133–153. https://doi.org/10.1016/j.ins.2021.04.050
Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731. https://doi.org/10.1109/TEVC.2007.892759
Han X, Chao T, Yang M, Li M (2024) A steady-state weight adaptation method for decomposition-based evolutionary multi-objective optimisation. Swarm Evol Comput 89:101641. https://doi.org/10.1016/j.swevo.2024.101641
Li G, Wang GG, Xiao RB (2022) A novel adaptive weight algorithm based on decomposition and two-part update strategy for many-objective optimization. Inf Sci 615:323–347. https://doi.org/10.1016/j.ins.2022.09.057
Yuan Y, Xu H, Wang B, Zhang B, Yao X (2015) Balancing convergence and diversity in decomposition-based many-objective optimizers. IEEE Trans Evol Comput 20(2):180–198. https://doi.org/10.1109/TEVC.2015.2443001
Wang Z, Zhang Q, Zhou A, Gong M, Jiao L (2015) Adaptive replacement strategies for MOEA/D. IEEE Trans Cybern 46(2):474–486. https://doi.org/10.1109/TCYB.2015.2403849
Wu Y, Wei J, Ying W, Lan Y, Cui Z, Wang Z (2022) A collaborative decomposition-based evolutionary algorithm integrating normal and penalty-based boundary intersection methods for many-objective optimization. Inf Sci 616:505–525. https://doi.org/10.1016/j.ins.2022.10.136
Pang LM, Ishibuchi H, Shang K (2022) Use of two penalty values in multiobjective evolutionary algorithm based on decomposition. IEEE Trans Cybern 53(11):7174–7186. https://doi.org/10.1109/TCYB.2022.3182167
Zhao Q, Guo Y, Yao X, Gong D (2022) Decomposition-based multiobjective optimization algorithms with adaptively adjusting weight vectors and neighborhoods. IEEE Trans Evol Comput 27(5):1485–1497. https://doi.org/10.1109/TEVC.2022.3201890
He X, Zhou Y, Chen Z, Zhang Q (2018) Evolutionary many-objective optimization based on dynamical decomposition. IEEE Trans Evol Comput 23(3):361–375. https://doi.org/10.1109/TEVC.2018.2865590
Liu C, Zhao Q, Yan B, Elsayed S, Ray T, Sarker R (2018) Adaptive sorting-based evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 23(2):247–257. https://doi.org/10.1109/TEVC.2018.2848254
Bosman PA, Thierens D (2003) The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Trans Evol Comput 7(2):174–188. https://doi.org/10.1109/TEVC.2003.810761
While L, Hingston P, Barone L, Huband S (2006) A faster algorithm for calculating hypervolume. IEEE Trans Evol Comput 10(1):29–38. https://doi.org/10.1109/TEVC.2010.2077298
Zitzler E and Künzli S (2004) Indicator-based selection in multiobjective search. In: International conference on parallel problem solving from nature, pp 832-842. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-30217-9_84
Zapotecas-Martínez S, López-Jaimes A, García-Nájera A (2019) LIBEA: a lebesgue indicator-based evolutionary algorithm for multi-objective optimization. Swarm Evol Comput 44:404–419. https://doi.org/10.1016/j.swevo.2018.05.004
García JLL, Monroy R, Hernández VAS, Coello CAC (2021) COARSE-EMOA: an indicator-based evolutionary algorithm for solving equality constrained multi-objective optimization problems. Swarm Evol Comput 67:100983. https://doi.org/10.1016/j.swevo.2021.100983
Falcón-Cardona JG, Ishibuchi H, Coello CAC, Emmerich M (2021) On the effect of the cooperation of indicator-based multiobjective evolutionary algorithms. IEEE Trans Evol Comput 25(4):681–695. https://doi.org/10.1109/TEVC.2021.3061545
Pour PA, Bandaru S, Afsar B, Emmerich M, Miettinen K (2023) A performance indicator for interactive evolutionary multiobjective optimization methods. IEEE Trans Evol Comput 28(3):778–787. https://doi.org/10.1109/TEVC.2023.3272953
Liang Z, Luo T, Hu K, Ma X, Zhu Z (2020) An indicator-based many-objective evolutionary algorithm with boundary protection. IEEE Trans Cybern 51(9):4553–4566. https://doi.org/10.1109/TCYB.2019.2960302
Liu Z, Wang H, Xi Y (2022) Performance indicator-based adaptive model selection for offline data-driven multiobjective evolutionary optimization. IEEE Trans Cybern 53(10):6263–6276. https://doi.org/10.1109/TCYB.2022.3170344
Shang K, Ishibuchi H (2020) A new hypervolume-based evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 24(5):839–852. https://doi.org/10.1109/TEVC.2020.2964705
Palakonda V, Mallipeddi R (2020) An evolutionary algorithm for multi and many-objective optimization with adaptive mating and environmental selection. IEEE Access 8:82781–82796. https://doi.org/10.1109/ACCESS.2020.2991752
Palakonda V, Kang JM (2023) Pre-DEMO: preference-inspired differential evolution for multi/many-objective optimization. IEEE Trans Syst Man Cybern Syst 53(12):7618–7630. https://doi.org/10.1109/TSMC.2023.3298690
Shen J, Wang P, Wang X (2020) A controlled strengthened dominance relation for evolutionary many-objective optimization. IEEE Trans Cybern 52(5):3645–3657. https://doi.org/10.1109/TCYB.2020.3015998
Palakonda V, Kang JM, Jung H (2024) Clustering-aided grid-based one-to-one selection-driven evolutionary algorithm for multi/many-objective optimization. IEEE Access 12:120612–120623. https://doi.org/10.1109/ACCESS.2024.3398415
Sun Y, Xue B, Zhang M, Yen GG (2018) A new two-stage evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 23(5):748–761. https://doi.org/10.1109/TEVC.2018.2882166
Steuer RE (1986) Multiple criteria optimization: theory, computation and application. Wiley, New York, NY, USA
Li M, Yang S, Liu X (2015) Pareto or non-Pareto: Bi-criterion evolution in multiobjective optimization. IEEE Trans Evol Comput 20(5):645–665. https://doi.org/10.1109/TEVC.2015.2504730
Li M, Yang S, Liu X (2015) Bi-goal evolution for many-objective optimization problems. Artif Intell 228:45–65. https://doi.org/10.1016/j.artint.2015.06.007
Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3(4):257–271. https://doi.org/10.1109/4235.797969
Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength Pareto evolutionary algorithm. TIK Report. https://doi.org/10.3929/ethz-a-004284029
Li K, Fialho A, Kwong S, Zhang Q (2013) Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 18(1):114–130. https://doi.org/10.1109/TEVC.2013.2239648
Wang R, Zhang Q, Zhang T (2016) Decomposition-based algorithms using Pareto adaptive scalarizing methods. IEEE Trans Evol Comput 20(6):821–837. https://doi.org/10.1109/TEVC.2016.2521175
Yu K, Liang J, Qu B, Luo Y, Yue C (2021) Dynamic selection preference-assisted constrained multiobjective differential evolution. IEEE Trans Syst Man Cybern Syst 52(5):2954–2965. https://doi.org/10.1109/TSMC.2021.3061698
Liu Y, Gong D, Sun X, Zhang Y (2017) Many-objective evolutionary optimization based on reference points. Appl Soft Comput 50:344–355. https://doi.org/10.1016/j.asoc.2016.11.009
He Z, Yen GG (2015) Many-objective evolutionary algorithm: objective space reduction and diversity improvement. IEEE Trans Evol Comput 20(1):145–160. https://doi.org/10.1109/TEVC.2015.2433266
Sun Y, Yen GG, Yi Z (2018) IGD indicator-based evolutionary algorithm for many-objective optimization problems. IEEE Trans Evol Comput 23(2):173–187. https://doi.org/10.1109/TEVC.2018.2791283
Li W, Chen Y, Dong Y, Huang Y (2024) A solution potential-based adaptation reference vector evolutionary algorithm for many-objective optimization. Swarm Evol Comput 84(101451):1–15. https://doi.org/10.1016/j.swevo.2023.101451
Deb K, Thiele L, Laumanns M, Zitzler E (2002) Scalable multi-objective optimization test problems. In: Proceedings of the 2002 congress on evolutionary computation. CEC'02, 1:825–830. https://doi.org/10.1109/CEC.2002.1007032
Huband S, Hingston P, Barone L, While L (2006) A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans Evol Comput 10(5):477–506. https://doi.org/10.1109/TEVC.2005.861417
Cheng R, Li M, Tian Y, Zhang X, Yao X (2017) Benchmark functions for the CEC'2017 competition on evolutionary many-objective optimization. https://api.semanticscholar.org/CorpusID:13842279
Zhu Q, Lin Q, Du Z, Liang Z, Wang W, Zhu Z, Chen J, Huang P, Ming Z (2016) A novel adaptive hybrid crossover operator for multiobjective evolutionary algorithm. Inf Sci 345:177–198. https://doi.org/10.1016/j.ins.2016.01.046
Mallipeddi R, Suganthan PN, Pan QK, Tasgetiren MF (2011) Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl Soft Comput 11(2):1679–1696. https://doi.org/10.1016/j.asoc.2010.04.024
Deb K, Goyal M (1996) A combined genetic adaptive search (GeneAS) for engineering design. Comput Sci Inf 26:30–45. https://doi.org/10.1007/978-3-662-03423-1_27
Wang Y, Cai Z, Zhang Q (2011) Diferential evolution with composite trial vector generation strategies and control parameters. IEEE Trans Evol Comput 15:55–66. https://doi.org/10.1109/TEVC.2010.2087271
Zitzler E, Thiele L, Laumanns M, Fonseca CM, Da Fonseca VG (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7:117–132. https://doi.org/10.1109/TEVC.2003.810758
While L, Hingston P, Barone L, Huband S (2006) A faster algorithm for calculating hypervolume. IEEE Trans Evol Comput 10:29–38. https://doi.org/10.1109/TEVC.2005.851275
Tian Y, Cheng R, Zhang X, Xi Y (2017) PlatEMO: a MATLAB platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput Intell Mag 12(4):73–87. https://doi.org/10.1109/MCI.2017.2742868
Tan KC, Chew YH, Lee LH (2006) A hybrid multiobjective evolutionary algorithm for solving vehicle routing problem with time windows. Comput Optim Appl 34:115–151. https://doi.org/10.1007/s10589-005-3070-3
Solomon MM (1987) Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper Res 35:254–265. https://doi.org/10.1287/opre.35.2.254
Palakonda V, Kang J, Jung H (2024) Benchmarking real-world many-objective problems: a problem suite with baseline results. IEEE Acess 12:49275–49290. https://doi.org/10.1109/ACCESS.2024.3383916
Jain H, Deb K (2014) An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach. IEEE Trans Evol Comput 18(4):602–622. https://doi.org/10.1109/TEVC.2013.2281534
Tanabe R, Ishibuchi H (2020) An easy-to-use real-world multi-objective optimization problem suite. Appl Soft Comput 89:106078. https://doi.org/10.1016/j.asoc.2020.106078
Goel T, Vaidyanathan R, Haftka RT, Shyy W, Queipo NV, Tucker K (2007) Response surface approximation of Pareto optimal front in multi-objective optimization. Comput Methods Appl Mech Eng 196(4–6):879–893. https://doi.org/10.1016/j.cma.2006.07.010
Vaidyanathan R, Tucker PK, Papila N, Shyy W (2004) Computational-fluid-dynamics-based design optimization for single-element rocket injector. J Propuls Power 20(4):705–717
Zapotecas-Martínez S, García-Nájera A, Menchaca-Méndez A (2023) Engineering applications of multi-objective evolutionary algorithms: a test suite of box-constrained real-world problems. Eng Appl Artif Intell 123:106192. https://doi.org/10.1016/j.engappai.2023.106192
Tanino T, Tanaka T, Inuiguchi M, Miettinen K (2003) Graphical illustration of Pareto optimal solutions. Multi-objective programming and goal programming: theory and applications. Springer, Berlin Heidelberg, pp 197–202
Thiele L, Miettinen K, Korhonen PJ, Molina J (2009) A preference-based evolutionary algorithm for multi-objective optimization. Evol Comput 17(3):411–436. https://doi.org/10.1007/978-3-642-19893-9_15
Chen YS (2017) Performance enhancement of multiband antennas through a two-stage optimization technique. Int J RF Microwave Comput Aided Eng 27(2):e21064. https://doi.org/10.1002/mmce.21064
Tafesse Azene Y (2011) Work roll system optimisation using thermal analysis and genetic algroithm. http://dspace.lib.cranfield.ac.uk/handle/1826/7117
Musselman K, Talavage J (1980) A tradeoff cut approach to multiple objective optimization. Oper Res 28(6):1424–1435. https://doi.org/10.1287/opre.28.6.1424
Deb K, Jain H (2013) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601. https://doi.org/10.1109/TEVC.2013.2281535
Funding
This research is partly supported by the National Natural Science Foundation of China under Project Code (62176146).
Author information
Authors and Affiliations
Contributions
Wei Li and Lei Wang wrote the main manuscript text. Wenhao Tang prepared all figures and tables. All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Ethical approval
Not applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix
The mathematical models for the real-world many-objective problems considered in this paper are as follows:
1 Car side impact design problem
where \(x_{1} \in \left[ {0.5,1.5} \right],\;x_{2} \in \left[ {0.45,1.35} \right],\;x_{3} \in \left[ {0.5,1.5} \right],\;x_{4} \in \left[ {0.5,1.5} \right],\)
2 Liquid-rocket single-element injector design
where \({x}_{1}\in [\text{0,20}],{x}_{2}\in [\text{0,40}],{x}_{3}\in [-\text{40,0}],\) and \({x}_{4}\in [\text{0.01,0.02}]\).
3 Location of a pollution monitoring system
where \({x}_{1}\in [-\text{4.9,3.2}],{x}_{2}\in [-\text{3.5,6}]\)
4 Ultra-wideband antenna design
where \({a}_{1}\in [\text{5,7}],{a}_{2}\in [\text{10,12}],{b}_{1}\in [\text{5,6}],{b}_{2}\in [\text{6,7}],{d}_{1}\in [\text{3,4}],{d}_{2}\in [\text{11.5,12.5}],\)
\({l}_{1}\in \left[\text{17.5,22.5}\right], {l}_{2}\in [\text{2,3}],{w}_{1}\in [\text{17.5,22.5}],\) and \({w}_{2}[\text{2,3}].\)
Among these decision variables \({a}_{1},{b}_{1},{l}_{1},{l}_{2},{w}_{1},{w}_{2}\) are the primary parameters. The remaining four parameters are determined as follows:
5 Single-pass Work roll cooling design problem
where the decision variables \({x}_{1}\in \left[\text{5,15}\right],{x}_{2}\in [\text{950,1250}],{ x}_{3}\in [\text{15,50}],{x}_{4}\in [\text{10,30}],{x}_{5}\in [\text{0.14,1.256}],{ x}_{6}\in [\text{40,80}],{x}_{7}\in [\text{20,100}]\).
6 Water resource planning
where \({x}_{1}\in [\text{0.01,0.45}],{x}_{2}\in [\text{0.01,0.10}],and {x}_{3}\in [\text{0.01,0.10}]\)
7 Car cab design problem
where \( x_{1} \in \left[ {0.5,1.5} \right],x_{2} \in \left[ {0.45,1.35} \right],x_{3} \in \left[ {0.5,1.5} \right],x_{4} \in \left[ {0.5,1.5} \right],x_{5} \in \left[ {0.875,2.625} \right],\)
Multi-pass Work roll cooling design problem
where the decision variables \(x_{1} \in \left[ {5,15} \right],x_{2} \in \left[ {1230,1250} \right],x_{3} \in \left[ {10,30} \right],x_{4} \in \left[ {15,50} \right],\)
\(x_{33} \in \left[ {0.98,1.1} \right],x_{34} \in \left[ {40,80} \right], and x_{35} \in \left[ {88.58,98.58} \right]\).
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Li, W., Tang, W. & Wang, L. Many-objective evolutionary algorithm based on dynamic mating and strengthened fitness selection mechanism. J Supercomput 81, 440 (2025). https://doi.org/10.1007/s11227-024-06821-3
Accepted:
Published:
DOI: https://doi.org/10.1007/s11227-024-06821-3