Skip to main content

Advertisement

Log in

Design and implementation of multiplication algorithm in quantum-dot cellular automata with energy dissipation analysis

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

QCA is an emerging nanotechnology for the design of digital system circuits based on electron interactions. QCA is used to design nanoscale circuits. Multiplier algorithms play an important role in computer computing, and algorithms with better performance speeds are more considerable. Booth multiplication algorithm is one of the multiplication algorithms that increases the multiplication speed by decreasing the number of partial products and using a smaller adder. In this paper, the Booth multiplication algorithm is designed and implemented in QCA. It has been tried to contain minimum number of cells and the least complexity and energy dissipation in the proposed design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Mano M (1993) Computer System Architecture, 3rd edn. Prentice-Hall International Editions Inc., Upper Saddle River

    MATH  Google Scholar 

  2. Rajadurai S, Alazab M, Kumar N, Gadekallu TR (2020) Latency evaluation of SDFGs on heterogeneous processors using timed automata. IEEE Access 8:140171–140180

    Article  Google Scholar 

  3. Marco A, Shen W-Z (1984) The design of an LSI Booth multiplier: nMOS vs. CMOS technology

  4. Kishore S, Kureshi D (2016) Hardware implementation of configurable booth multiplier on FPGA. Int J VLSI Des Commun 4(1):99–103

    Google Scholar 

  5. Lent C, Tougaw P (1997) A device architecture for computing with quantum dots. Proc IEEE 85(4):541–557

    Article  Google Scholar 

  6. Yu W, Zhang B, Liu C, Zhao Y, Wu WR, Xue ZY, Chen M, Buca D, Hartmann J-M, Wang X, Zhao QT, Mantl S (2014) Impact of Si cap, strain and temperature on the hole mobility of (s)Si/sSiGe/(s)SOI quantum-well p-MOSFETs. Microelectr Eng 113:5–9. https://doi.org/10.1016/j.mee.2013.06.015

    Article  Google Scholar 

  7. Bose R, Johnson HT (2004) Coulomb interaction energy in optical and quantum computing applications of self-assembled quantum dots. Microelectr Eng 75(1):43–53. https://doi.org/10.1016/j.mee.2003.11.008

    Article  Google Scholar 

  8. Asfestani MN, Heikalabad SR (2017a) A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures. Phys B Condens Matter 512:91–99

    Article  Google Scholar 

  9. Chabi AM et al (2017) Towards ultra-efficient QCA reversible circuits. Microprocess Microsyst 49:127–138

    Article  Google Scholar 

  10. Ahmad F et al (2016) Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J Comput Sci 16:8–15

    Article  MathSciNet  Google Scholar 

  11. Roohi A, DeMara RF, Khoshavi N (2015a) Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectron J 46(6):531–542

    Article  Google Scholar 

  12. Walus K et al (2004) QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26–31

    Article  Google Scholar 

  13. Heikalabad SR, Navin AH, Hosseinzadeh M (2015) Midpoint memory: a special memory structure for data-oriented models implementation. J Circ Syst Comput 24(5):1550063

    Article  Google Scholar 

  14. Heikalabad SR, Navin AH, Hosseinzadeh M (2016) Content addressable memory cell in quantum-dot cellular automata. Microelectron Eng 163:140–150

    Article  Google Scholar 

  15. Karkaj ET, Heikalabad SR (2017) Binary to gray and gray to binary converter in quantum-dot cellular automata. Opt Int J Light Electron Opt. https://doi.org/10.1016/j.ijleo.2016.11.087

    Article  Google Scholar 

  16. Lent CS, Tougaw PD, Porod W (1993) Bistable saturation in coupled quantum dots for quantum cellular automata. Appl Phys Lett 62(7):714–716

    Article  Google Scholar 

  17. Roohi A, DeMara RF, Khoshavi N (2015b) Design and evaluation of anultra-area-efficient fault-tolerant QCA full adder. Microelectron J 46(6):531–542

    Article  Google Scholar 

  18. Ahmadpour S-S, Mosleh M, Heikalabad SR (2018) A revolution in nanostructure designs by proposing a novel QCA full-adder based on optimized 3-input XOR. Phys B: Condens Matter 550:383–392

    Article  Google Scholar 

  19. Salimzadeh F, Heikalabad SR (2019) Design of a novel reversible structure for full adder/subtractor in quantum-dot cellular automata. Phys B: Condens Matter 556:163–169

    Article  Google Scholar 

  20. Heikalabad SR, Kamrani H (2019) Design and implementation of circuit-switched network based on nanoscale quantum-dot cellular automata. Photon Netw Commun 38(3):356–377

    Article  Google Scholar 

  21. Norouzi Ali, Heikalabad Saeed Rasouli (2019) Design of reversible parity generator and checker for the implementation of nano-communication systems in quantum-dot cellular automata. Photon Netw Commun 38(2):231–243

    Article  Google Scholar 

  22. Milad B, Mahya S, Alireza A, Keivan N, Nader B (2016) A 3D universal structure based on molecular-QCA and CNT technologies. J Mol Struct 1119:86–95. https://doi.org/10.1016/j.molstruc.2016.04.025

    Article  Google Scholar 

  23. Mohammad M, Majid M, Saeid G (2016) An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectr J 50:35–43. https://doi.org/10.1016/j.mejo.2016.02.004

    Article  Google Scholar 

  24. Karkaj ET, Heikalabad SR (2016) A testable parity conservative gate in quantum-dot cellular automata. Superlattices Microstruct. https://doi.org/10.1016/j.spmi.2016.08.054

    Article  Google Scholar 

  25. Asfestani MN, Heikalabad SR (2017b) A novel multiplexer-based structure for random access memory cell in quantum-dot cellular automata. Phys B Condens Matter 521:162–167

    Article  Google Scholar 

  26. Gadim MR, Navimipour NJ (2017) A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst Technol. https://doi.org/10.1007/s00542-017-3502-x

    Article  Google Scholar 

  27. Heikalabad SR, Asfestani MN, Hosseinzadeh M (2017) A full adder structure without crosswiring in quantum-dot cellular automata with energy dissipation analysis. J Supercomput. https://doi.org/10.1007/s11227-017-2206-4

    Article  Google Scholar 

  28. Barughi YZ, Heikalabad SR (2017) A three-layer full adder/subtractor structure in quantum-dot cellular automata. Int J Theor Phys 56:2848. https://doi.org/10.1007/s10773-017-3453-0

    Article  MATH  Google Scholar 

  29. Rad SK, Heikalabad SR (2017) Reversible flip-flops in quantum-dot cellular automata. Int J Theor Phys 56:2990. https://doi.org/10.1007/s10773-017-3466-8

    Article  MATH  Google Scholar 

  30. Hosseinzadeh H, Heikalabad SR (2018) A novel fault tolerant majority gate in quantum-dot cellular automata to create a revolution in design of fault tolerant nanostructures, with physical verification. Microelectron Eng 192:52–60. https://doi.org/10.1016/j.mee.2018.01.019

    Article  Google Scholar 

  31. Sadoghifar A, Heikalabad SR (2018) A Content-Addressable Memory structure using quantum cells in nanotechnology with energy dissipation analysis. Phys B Condens Matter 537:202–206. https://doi.org/10.1016/j.physb.2018.02.024

    Article  Google Scholar 

  32. Mariam Z, Keivan N (2012) Ultra-area-efficient reversible multiplier. Microelectr J 43(6):377–385. https://doi.org/10.1016/j.mejo.2012.02.004

    Article  Google Scholar 

  33. Basu S (2014) Realization of combinational multiplier using quantum cellular automata. Int J Comput Appl 99:19

    Google Scholar 

  34. Cho H, Swartzlander EE Jr (2009) Adder and Multiplier Design in Quantum-Dot Cellular Automata. IEEE Trans Comput 58(6):721–727. https://doi.org/10.1109/TC.2009.21

    Article  MathSciNet  MATH  Google Scholar 

  35. Angizi S, Sarmadi S, Sayedsalehi S, Navi K (2015) Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron J 46:43–51

    Article  Google Scholar 

  36. Dharmendra K, Debasis M (2016) Design of a practical fault-tolerant adder in QCA. Microelectr J 53:90–104. https://doi.org/10.1016/j.mejo.2016.04.004

    Article  Google Scholar 

  37. Heikalabad SR, Salimzadeh F, Barughi YZ (2020) A unique three-layer full adder in quantum-dot cellular automata. Comput Electri Eng 86:106735

    Article  Google Scholar 

  38. Norouzi M, Heikalabad SR, Salimzadeh F (2020) A reversible ALU using HNG and Ferdkin gates in QCA nanotechnology. Int J Circuit Theory Appl 48(8):1291–1303

    Article  Google Scholar 

  39. Salimzadeh, Fereshteh, Heikalabad SR, Gharehchopogh FS (2020) Design of a reversible structure for memory in quantum‐dot cellular automata. Int J Circuit Theory Appl

  40. Ahmadpour S-S, Mosleh M, Heikalabad SR (2019) Robust QCA full-adders using an efficient fault-tolerant five-input majority gate. Int J Circuit Theory Appl 47(7):1037–1056

    Article  Google Scholar 

  41. Trailokya N, Ashutosh K, Anand M (2016) An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata. Opt Int J Light Electron Opt 127(20):8576–8591. https://doi.org/10.1016/j.ijleo.2016.06.034

    Article  Google Scholar 

  42. Firdous A, Ghulam M, Hossein K, Saeid A, Shaahin A, Keivan N (2016) Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J Comput Sci 16:8–15. https://doi.org/10.1016/j.jocs.2016.02.005

    Article  MathSciNet  Google Scholar 

  43. Moein K, Reza S-N, Keivan N (2014) A novel design of 8-bit adder/subtractor by quantum-dot cellular automata. J Comput Syst Sci 80(7):1404–1414. https://doi.org/10.1016/j.jcss.2014.04.012

    Article  MathSciNet  MATH  Google Scholar 

  44. Ahmadpour S-S, Mosleh M, Heikalabad SR (2020) An efficient fault-tolerant arithmetic logic unit using a novel fault-tolerant 5-input majority gate in quantum-dot cellular automata. Comput Electri Eng 82:106548

    Article  Google Scholar 

  45. Ahmadpour S-S, Mosleh M, Heikalabad SR (2020) The design and implementation of a robust single-layer QCA ALU using a novel fault-tolerant three-input majority gate. J Supercomputing 76(12):10155–10185

    Article  Google Scholar 

  46. Waddell J (2012) An overview of binary arithmetic architectures & their implementation in DSP systems.

  47. Walus K, Dysart TJ, Jullien GA, Arief Budiman R (2004) QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26–31

    Article  Google Scholar 

  48. Srivastava S, Asthana A, Bhanja S, Sarkar S (2011) QCAPRo-an error power estimation tool for QCA circuit design. In: Proceedings of the IEEE International Symposium Circuits System, pp 2377–2380.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Rasouli Heikalabad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamrani, H., Heikalabad, S.R. Design and implementation of multiplication algorithm in quantum-dot cellular automata with energy dissipation analysis. J Supercomput 77, 5779–5805 (2021). https://doi.org/10.1007/s11227-020-03478-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-020-03478-6

Keywords