Skip to main content
Log in

Smooth interfaces for spectral element method for the solution of incompressible Newtonian fluid flow

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

A smoothing technique is developed to calculate the interface conditions of spectral element method for solving the incompressible Newtonian fluid flow. The first derivative at the interface of spectral elements is calculated by using only the adjacent subdomains. Numerical simulations of an incompressible laminar fluid flow through a planar channel and a 2:1 planar contraction channel are presented for various Reynolds numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnes JF, Hutton JF, Walters K (1989) An introduction to rheology. Elsevier, Amsterdam

    MATH  Google Scholar 

  2. Bernardi C, Maday Y (1996) Spectral element methods. In: Ciarlet PG, Lions JL (eds) Handbook of numerical analysis. North-Holland, Amsterdam

    Google Scholar 

  3. Black K (1997) A spectral element technique with a local spectral basis. SIAM J Sci Comput 18:355–370

    Article  MATH  MathSciNet  Google Scholar 

  4. Canuto C, Hussaini MY, Quarteroni A, Zang TA (1988) Spectral methods for fluid dynamics. Springer, New York

    Google Scholar 

  5. Dennis SCR, Smith FT (1980) Steady flow through a channel with a symmetrical constriction in the form of a step. Proc R Soc Lond A 372:393–414

    Article  MATH  MathSciNet  Google Scholar 

  6. Fischer PF, Patera AT (1991) Parallel spectral element solution of the Stokes problem. J Comput Phys 92:380–421

    Article  MATH  Google Scholar 

  7. Gerritsma MI, Phillips TN (2000) Spectral element method for axisymmetric Stokes problems. J Comput Phys 164:81–103

    Article  MATH  MathSciNet  Google Scholar 

  8. Gottlieb D, Hirsh RS (1989) Parallel pseudospectral domain decomposition techniques. J Sci Comput 4:309–326

    Article  MathSciNet  Google Scholar 

  9. Gwynllyw DR, Davies AR, Phillips TN (1996) A moving spectral element approach to the dynamically loaded bearing problem. J Comput Phys 123:476–494

    Article  MATH  MathSciNet  Google Scholar 

  10. Johnson C (1987) Numerical solution of partial differential equations by the finite element method. Cambridge Univ. Press, Cambridge

    MATH  Google Scholar 

  11. Karageorghis A, Phillips TN (1991) Conforming Chebyshev spectral methods for the solution of laminar flow in a constricted channel. IMA J Numer Anal 11:33–54

    Article  MATH  MathSciNet  Google Scholar 

  12. Karniadakis GE (1989) Spectral element simulations of laminar and turbulent flows in complex geometries. Appl Num Math 6:85–105

    Article  MATH  MathSciNet  Google Scholar 

  13. Li XK, Gwynllyw DR, Davies AR, Phillips TN (1999) Three dimensional effects in dynamically loaded journal bearings. Int J Numer Meth Fluids 29:311–341

    Article  MATH  MathSciNet  Google Scholar 

  14. Li XK, Gwynllyw DR, Davies AR, Phillips TN (2000) On the influence of lubricant properties on the dynamics of two-dimensional journal bearings. J Non-Newton Fluid 93:29–59

    Article  MATH  Google Scholar 

  15. Maday Y, Patera AT (1989) Spectral element methods for the incompressible Navier–Stokes equations. In: State of the art surveys in computational mechanics, pp 71–143

  16. Meng S, Li XK, Evans G (2002) Numerical simulation of Oldroyd-b fluid in a contraction channel. J Supercomput 22:29–43

    Article  MATH  Google Scholar 

  17. Meng S, Li XK, Evans G (2003) Spectral element method for viscoelastic flows in a planar contraction channel. Int J Numer Meth Fluids 42:323–348

    Article  MATH  Google Scholar 

  18. Orszag SA, Gottlieb D (1977) Numerical analysis of spectral methods: theory and applications. SIAM, Philadelphia

    MATH  Google Scholar 

  19. Patera A (1984) A spectral element method for fluid dynamics: laminar flow in a channel expansion. J Comput Phys 54:468–488

    Article  MATH  Google Scholar 

  20. Stroud AH, Secrest D (1966) Gaussian quadrature formulas. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  21. Temam R (1977) Navier–Stokes equations. Theory and numerical analysis. North-Holland, Amsterdam

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronaldo Mercado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, S., Li, X.K. & Mercado, R. Smooth interfaces for spectral element method for the solution of incompressible Newtonian fluid flow. J Supercomput 48, 319–331 (2009). https://doi.org/10.1007/s11227-008-0230-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-008-0230-0

Keywords

Navigation