Skip to main content
Log in

Investigating the effect of structural antisite defects on the adsorption and detection of ozone gas by AlP nanotubes

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The density functional B3LYP was exploited in order to scrutinize the impact of antisite defects on the sensing capability of an AlP nanotube (AlP-NT) in detecting the gas O3. Due to the low adsorption energy (Ead =  − 7.4 kcal/mol), O3 had a weak interaction with the pure and the P-antisite AlP-NT (DP). Therefore, it is not possible to use the pure AlP-NT and DP as sensors. However, there was a substantial increase in tube reactivity and sensitivity when O3 approached the Al-antisite defected AlP-NT (DAl). Its adsorption released an energy of − 24.3 kcal/mol. There is a reduction in the energy gap of the HOMO–LUMO of DAl from 2.25 to 1.41 eV (~ − 37.3%) when O3 is adsorbed. Therefore, we found that DAl as adsorbate increases its sensitivity much more than the DP and pure AlP-NT examined in this work. The computed recovery time for the DAl was 50.9 s, which is short. The theoretical results of the current study can provide further insights into the practical applications of AlP nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

All data will be available if required.

Code availability

Not applicable.

References

  1. Peyghan AA, Moradi M (2014) J Mol Model 20:1–7

    Google Scholar 

  2. Felix EP, Passaretti Filho J, Garcia G, Cardoso AA (2022) Microchem J 99 530–534

  3. Gurlo A, Bârsan N, Ivanovskaya M, Weimar U, Göpel W (1998) Sens Actuators, B Chem 47:92–99

    Article  CAS  Google Scholar 

  4. Wang Y, Li C, Zhang Y, Yang M, Li B, Dong L, Wang J (2018) International Journal of Precision Engineering and Manufacturing-Green Technology 5:327–339. https://doi.org/10.1007/s40684-018-0035-4

    Article  CAS  Google Scholar 

  5. Zhang J, Li C, Zhang Y, Yang M, Jia D, Liu G, Hou Y, Li R, Zhang N, Wu Q (2018) J Clean Prod 193:236–248. https://doi.org/10.1007/s00170-021-08235-4

    Article  CAS  Google Scholar 

  6. Cui X, Li C, Zhang Y, Said Z, Debnath S, Sharma S, Ali HM, Yang M, Gao T, Li R (2022) J Manuf Process 80:273–286. https://doi.org/10.1016/j.jmapro.2022.06.003

    Article  Google Scholar 

  7. Zhang X, Li C, Zhang Y, Jia D, Li B, Wang Y, Yang M, Hou Y, Zhang X (2016) The International Journal of Advanced Manufacturing Technology 86:3427–3441. https://doi.org/10.1007/s00170-016-8453-3

    Article  Google Scholar 

  8. Yu Y, Yi X, Zhang J, Tong Z, Chen C, Ma M, He C, Wang J, Chen J, Chen B (2021) Catal Sci Technol 11:5125–5134. https://doi.org/10.1039/D1CY00467K

    Article  CAS  Google Scholar 

  9. Li T, Shang D, Gao S, Wang B, Kong H, Yang G, Shu W, Xu P, Wei G (2022) Biosensors 12:314. https://doi.org/10.3390/bios12050314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Phalinyot S, Tabtimsai C, Wanno B (2019) Struct Chem 30:2135–2149

    Article  CAS  Google Scholar 

  11. Wang M-R, Deng L, Liu G-C, Wen L, Wang J-G, Huang K-B, Tang H-T, Pan Y-M (2019) Org Lett 21:4929–4932. https://doi.org/10.1021/acs.orglett.9b01230

    Article  CAS  PubMed  Google Scholar 

  12. Han Y, Li W, Song C, Wu Y, Peyghan FA (2022) Monatshefte für Chemie-Chemical Monthly 153:153–160

    Article  CAS  Google Scholar 

  13. Qin Y, Xi B, Sun H, Zhang, Xue C, Wu B (2022) Methane emission reduction and biological characteristics of landfill cover soil amended with hydrophobic biochar, Front bioeng biotechnol 10. https://doi.org/10.3389/fbioe.2022.905466

  14. Bai B, Rao D, Chang T, Guo Z (2019) J Hydrol 578:124080. https://doi.org/10.1016/j.jhydrol.2019.124080

    Article  CAS  Google Scholar 

  15. Das A, Yadav RK (2021) Struct Chem 32:379–386

    Article  CAS  Google Scholar 

  16. Chen Z, He X, Ge J, Fan G, Zhang L, Parvez AM, Wang G (2022) Ind Crops Prod 186:115269. https://doi.org/10.1016/j.indcrop.2022.115269

    Article  CAS  Google Scholar 

  17. Yang M, Li C, Zhang Y, Jia D, Zhang X, Hou Y, Li R, Wang J (2017) Int J Mach Tools Manuf 122:55–65. https://doi.org/10.1016/j.ijmachtools.2017.06.003

    Article  Google Scholar 

  18. Paul D, Vaidyanathan A, Sarkar U, Chakraborty B (2021) Struct Chem 32:2259–2270

    Article  CAS  Google Scholar 

  19. Yang Y, Zhao Y, Xing M, Tian C, Ahmadi Peyghan F (2022) Mol Simul 1–9. https://doi.org/10.1080/08927022.2022.2095375

  20. Altimari US, Parra RMR, Acwin NK, Majdi A, Kadhim MM, Alawsi T, Suksatan W, Peyghan FA (2022) Comput Theor Chem 1215:113805

    Article  CAS  Google Scholar 

  21. Peyghan AA, Soleymanabadi H, Bagheri Z (2015) Iranian Journal of Science and Technology (Sciences) 39:485–489

    Google Scholar 

  22. Xu W, Li C, Zhang Y, Ali HM, Sharma S, Li R, Yang M, Gao T, Liu M, Wang X (2022) Electrostatic atomization minimum quantity lubrication machining: from mechanism to application. International Journal of Extreme Manufacturing 4:042003. https://doi.org/10.1088/2631-7990/ac9652

    Article  Google Scholar 

  23. Ni J, Yang B, Jia F, She Y, Song S, Quintana M (2018) Chem Phys Lett 710:221–225

    Article  CAS  Google Scholar 

  24. Liu C-S, Teng Z-W, Ye X-J, Yan X-H (2017) Journal of Materials Chemistry C 5:5999–6004

    Article  CAS  Google Scholar 

  25. Dhara S, Giri P (2012) Thin Solid Films 520:5000–5006

    Article  CAS  Google Scholar 

  26. Prades J, Cirera A, Morante J (2009) Sens Actuators, B Chem 142:179–184

    Article  CAS  Google Scholar 

  27. Tominaga K, Murayama T, Mori I, Ushiro T, Moriga T, Nakabayashi I (2001) Thin Solid Films 386:267–270

    Article  CAS  Google Scholar 

  28. Beheshtian J, Peyghan AA, Bagheri Z (2012) Appl Surf Sci 258:8171–8176

    Article  CAS  Google Scholar 

  29. Zhang L, Zhao J, Lu H, Gong L, Li L, Zheng J, Li H, Zhu Z (2011) Sens Actuators, B Chem 160:364–370

    Article  CAS  Google Scholar 

  30. Großmann D, Dreier A, Lehmann CW, Grünert W (2015) Microporous Mesoporous Mater 202:189–197

    Article  Google Scholar 

  31. Yue Y, Guo B, Qiao Z-A, Fulvio PF, Chen J, Binder AJ, Tian C, Dai S (2014) Microporous Mesoporous Mater 198:139–143

    Article  CAS  Google Scholar 

  32. Wang H-T, Liu Y-P, Zhang H, Chang N, Shao W, Shi M-S, Ao D, Lu M-C (2019) Microporous Mesoporous Mater 288:109548

    Article  CAS  Google Scholar 

  33. Wei X, Li H, Yuan Ce, Li Q, Chen S (2009) Microporous and Mesoporous Materials 118:307–313

  34. Li H, Zhang Y, Li C, Zhou Z, Nie X, Chen Y, Cao H, Liu B, Zhang N, Said Z (2022) Korean J Chem Eng 1–28.https://doi.org/10.1007/s11814-021-1057-0

  35. Gao T, Zhang Y, Li C, Wang Y, Chen Y, An Q, Zhang S, Li HN, Cao H, Ali HM (2022) Front Mech Eng 17:1–35. https://doi.org/10.1007/s11465-022-0680-8

    Article  Google Scholar 

  36. Abbasi A, Sardroodi JJ (2017) Journal of Nanostructure in Chemistry 7:345–358

    Article  CAS  Google Scholar 

  37. Rad AS, Shabestari SS, Mohseni S, Aghouzi SA (2016) 237 204–210

  38. Rad AS, Ayub K (2017) Solid State Sci 69:22–30

    Article  CAS  Google Scholar 

  39. Salih E, Ayesh AI (2021) Physica E 131:114736

    Article  CAS  Google Scholar 

  40. Li H, Zhang Y, Li C, Zhou Z, Nie X, Chen Y, Cao H, Liu B, Zhang N, Said Z (2022) J. Adv. Manuf. Technol 1–27. https://doi.org/10.1007/s00170-021-08614-x

  41. Tang Y, Ma J (2014) RSC Adv 4:25692–25697

    Article  CAS  Google Scholar 

  42. Khan SB, Asiri AM, Rahman MM, Marwani HM, Alamry KA (2015) Physica E 70:203–209

    Article  CAS  Google Scholar 

  43. Khudiar AI, Elttayef AK, Khalaf MK, Oufi AM (2020) Materials Research Express 6:126450

    Article  Google Scholar 

  44. Yun S-I, Kim H-M, Lee S-K, Baek C-W, Park J-H (2019) J Micromech Microeng 29:115017

    Article  CAS  Google Scholar 

  45. Anqi AE, Li C, Dhahad HA, Sharma K, ATTIA E-A, Abdelrahman A, Mohammed AG, Alamri S, Rajhi AA (2022) J Energy Storage 52:104906. https://doi.org/10.1016/j.est.2022.104906

  46. Mirzaei M, Mirzaei M (2010) J Mol Struct (Thoechem) 951:69–71

    Article  CAS  Google Scholar 

  47. Mirzaei M (2020) Adv J Sci Eng 1:1–2

    Google Scholar 

  48. Mirzaei M, Giahi M (2010) Physica E 42:1667–1669

    Article  CAS  Google Scholar 

  49. Burns LA, Mayagoitia ÁV, Sumpter BG, Sherrill CD (2011) J Chem Phys 134 084107

  50. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comp Chem 14:1347–1363

    Article  CAS  Google Scholar 

  51. O’Boyle N, Tenderholt A, Langner K (2008) J Comput Chem 29:839–845

    Article  PubMed  Google Scholar 

  52. Adhikari K, Ray A (2011) Phys Lett A 375:1817–1823

    Article  CAS  Google Scholar 

  53. Zhao G, Li X, Huang M, Zhen Z, Zhong Y, Chen Q, Zhao X, He Y, Hu R, Yang T (2017) Chem Soc Rev 46:4417–4449

    Article  CAS  PubMed  Google Scholar 

  54. Yang YY, Gong YD, Li CH, Wen XL, Sun JY (2021) J Mater Process Technol 291:117023. https://doi.org/10.1016/j.jmatprotec.2020.117023

    Article  CAS  Google Scholar 

  55. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  56. Yang M, Li C, Zhang Y, Jia D, Li R, Hou Y, Cao H, Wang J (2019) Ceram Int 45:14908–14920. https://doi.org/10.1016/j.ceramint.2019.04.226

    Article  CAS  Google Scholar 

  57. Jaballah S, Benamara M, Dahman H, Lahem D, Debliquy M, El Mir L (2020) J Mater Sci: Mater Electron 31:8230–8239

    CAS  Google Scholar 

  58. Stegmeier S, Fleischer M, Hauptmann P (2010) Sens Actuators, B Chem 148:439–449

    Article  CAS  Google Scholar 

  59. Bano A, Krishna J, Pandey DK, GPtr N (2019) Phys Chem Chem Phys 21:4633–4640

Download references

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Mustafa M. Kadhim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

We approved all ethics.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadhim, M.M., Rheima, A.M., Shadhar, M.H. et al. Investigating the effect of structural antisite defects on the adsorption and detection of ozone gas by AlP nanotubes. Struct Chem 34, 1497–1505 (2023). https://doi.org/10.1007/s11224-022-02100-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-02100-0

Keywords

Navigation