Skip to main content
Log in

A DFT investigation of the host–guest interactions between boron-based aromatic systems and β-cyclodextrin

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Density functional theory calculations including dispersion at BLYP-D3(BJ)/def2-SVP level of theory were performed for a series of systems based on cyclodextrin complexation with boron-based aromatic compounds. Elaborated investigations were carried out using different quantum chemical parameters such as computed complexation energies, theoretical association constants, and natural bond orbital (NBO) analysis. Several configurations and inclusion modes were considered in this work. The calculated complexation energies were consistent with the experimental classification of these systems on the basis of occurring interactions. Reduced density gradient (RDG) and independent gradient model (IGM) approaches determined the nature and strength of non-covalent interactions which played a central role in the formation of the complexes. Thus, phenylboronic acid (PBA) and benzoxaborole (Bxb) act mainly as hydrogen-bonded complexes with β-cyclodextrin, while mainly Van der Waals (vdW) interactions stabilize both catechol (PhBcat) and pinacol esters of phenylboronic acid (PhBpin) complexes. The ferroceneboronic acid (FcBA) exhibits a mixture of H-bonds and vdW interactions with β-cyclodextrin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mejia-Ariza R, Graña-Suárez L, Verboom W, Huskens J (2017) J Mater Chem B 5:36–52

    Article  CAS  PubMed  Google Scholar 

  2. Jelinek R, Kolusheva S (2004) Chem Rev 104:5987–6016

    Article  CAS  PubMed  Google Scholar 

  3. Hansen JS, Christensen JB, Petersen JF, Hoeg-Jensen T, Norrild JC (2012) Sens Actuator B-Chem 161:45–79

    Article  CAS  Google Scholar 

  4. Friščić T (2012) Chem Soc Rev 41:3493–3510

    Article  PubMed  Google Scholar 

  5. Adamczyk-Woźniak A, Borys KM, Czerwińska K, Gierczyk B, Jakubczyk M, Madura ID, Sporzyński A, Tomecka E (2013) Spectrochim Acta A Mol Biomol Spectrosc 116:616–621

    Article  PubMed  Google Scholar 

  6. Yang S-T, Kim J, Cho HY, Kim S, Ahn WS (2012) RSC Adv 2:10179–10181

    Article  CAS  Google Scholar 

  7. Jayeoye TJ, Cheewasedtham W, Putson C, Rujiralai T (2019) J Mol Liq 281:407–414

    Article  CAS  Google Scholar 

  8. Geethanjali H, Melavanki RM, Nagaraja D, Bhavya P, Kusanur RA (2017) J Mol Liq 227:37–43

    Article  Google Scholar 

  9. Corey EJ (2002) Angew Chem Int Ed 41:1650–1667

    Article  CAS  Google Scholar 

  10. Dimitrijevic E, Taylor MS (2013) ACS Catal 3:945–962

    Article  CAS  Google Scholar 

  11. Ishihara K (2015) In: Fernández E, Whiting A (Eds) Boronic Acid-Catalyzed Reactions of Carboxylic Acids, Springer, Berlin

  12. Taylor MS (2015) Acc Chem Res 48:295–305

    Article  CAS  PubMed  Google Scholar 

  13. Peters JA (2014) Coord Chem Rev 268:1–22

    Article  CAS  Google Scholar 

  14. Yan J, Springsteen G, Deeter S, Wang B (2004) Tetrahedron 60:11205–11209

    Article  CAS  Google Scholar 

  15. Pal A, Bérubé M, Hall DG (2010) Angew Chem Int Ed 49:1492–1495

    Article  CAS  Google Scholar 

  16. Hall DG (2011). In: Hall DG (ed) Boronic Acids: Preparation and Applications in Organic Synthesis. Medicine and Materials, Wiley-VCH Verlag, New York, p 2011

    Chapter  Google Scholar 

  17. You L, Zha D, Anslyn EV (2015) Chem Rev 115:7840–7892

    Article  CAS  PubMed  Google Scholar 

  18. Wu J, Kwon B, Liu W, Anslyn EV, Wang P, Kim JS (2015) Chem Rev 115:7893–7943

    Article  CAS  PubMed  Google Scholar 

  19. Gaudisson T, Sharma SK, Mohamed R, Youmbi BS, Menguy N, Calvayrac F, Seydou M, Merah SA (2021) CrystEngComm 23:1756–1764

    Article  CAS  Google Scholar 

  20. Das BC, Thapa P, Karki R, Schinke C, Das S, Kambhampati S, Banerjee SK, Van Veldhuizen P, Verma A, Weiss LM, Evans T (2013) Future Med Chem 5:653–676

    Article  CAS  PubMed  Google Scholar 

  21. Chen P, Yuan Q, Yang H, Wen X, You P, Hou D, Xie J, Cheng Y, Huang H (2017) Leuk Res 57:119–126

    Article  CAS  PubMed  Google Scholar 

  22. Menezes PDP, Andrade TA, Frank LA (2019) de Souza EPBSS, Trindade GDGG, Trindade IAS, Serafini MR, Guterres SS, Araújo AAS. Int J Pharm 559:312–328

    Article  CAS  PubMed  Google Scholar 

  23. Bonnet V, Gervaise C, Djedaïni-Pilard F, Furlan A, Sarazin C (2015) Drug Discov Today 20:1120–1126

    Article  CAS  PubMed  Google Scholar 

  24. Casas-Solvas JM, Ortiz-Salmerón E, Fernández I, García-Fuentes L, Santoyo-González F, Vargas-Berenguel A (2009) Chem Eur J 15:8146–8162

    Article  CAS  PubMed  Google Scholar 

  25. Hapiot F, Tilloy S, Monflier E (2006) Chem Rev 106:767–781

    Article  CAS  PubMed  Google Scholar 

  26. Harada A, Takahashi S (1984) J Incl Phenom 2:791–798

    Article  CAS  Google Scholar 

  27. Harada A, Takahashi S (1984) J Chem Soc Chem Commun 645–646

  28. Jullian C, Miranda S, Zapata-Torres G, Mendizábal F, Olea-Azar C (2007) Bioorg Med Chem 15:3217–3224

    Article  CAS  PubMed  Google Scholar 

  29. Kompany-Zareh M, Mokhtari Z, Abdollahi H (2012) Chemom Intell Lab Syst 118:230–238

    Article  CAS  Google Scholar 

  30. Kasprzak A, Borys KM, Molchanov S, Adamczyk-Woźniak A (2018) Carbohydr Polym 198:294–301

    Article  CAS  PubMed  Google Scholar 

  31. Neese F (2012) Wiley Interdiscip Rev Comput Mol Sci 2:73–78

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision D.01. Gaussian Inc., Wallingford

  33. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  34. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  35. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

  36. Becke AD, Johnson ER (2005) J Chem Phys 123:154101

  37. Johnson ER, Becke AD (2006) J Chem Phys 124:174104

  38. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456–1465

    Article  CAS  PubMed  Google Scholar 

  39. Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571–2577

    Article  Google Scholar 

  40. Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829–5835

    Article  Google Scholar 

  41. Weigend F (2006) Phys Chem Chem Phys 8:1057–1065

    Article  CAS  PubMed  Google Scholar 

  42. Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Chem Phys Lett 240:283–290

    Article  CAS  Google Scholar 

  43. Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Theor Chem Acc 97:119–124

    Article  CAS  Google Scholar 

  44. Kruse H, Grimme S (2012) J Chem Phys 136:154101

  45. Goerigk L, Hansen A, Bauer C, Ehrlich S, Najibi A, Grimme S (2017) Phys Chem Chem Phys 19:32184–32215

    Article  CAS  PubMed  Google Scholar 

  46. Brauer B, Kesharwani MK, Kozuch S, Martin JML (2016) Phys Chem Chem Phys 18:20905–20925

    Article  CAS  PubMed  Google Scholar 

  47. Mardirossian N, Head-Gordon M (2017) Mol Phys 115:2315–2372

    Article  CAS  Google Scholar 

  48. Hostas J, Rezac J (2017) J Chem Theory Comput 13:3575–3585

    Article  CAS  PubMed  Google Scholar 

  49. Zielesny A (2005) J Chem Inf Model 45:1474–1477

    Article  CAS  Google Scholar 

  50. Hyperchem R (2002) 751 for windows, Hypercube Inc Gainesville

  51. Liu L, Guo QX (2004) J Incl Phenom Macrocycl Chem 50:95−103

  52. Köhler JEH, Grczelschak-Mick N (2013) Beilstein J Org Chem 9:118−134

  53. Bouhadiba A, Rahali S, Belhocine Y, Allal H, Nouar L, Rahim M (2020) Carbohydr Res 491:107980

  54. Sancho MI, Andujar S, Porasso RD, Enriz RD (2016) J Phys Chem B 120:3000–3011

    Article  CAS  PubMed  Google Scholar 

  55. Zhang D, Liu J, Wang T, Sun L (2017) J Mol Model 23:149

    Article  PubMed  Google Scholar 

  56. Yang YZ, Liu XF, Zhang RB, Pang SP (2017) Phys Chem Chem Phys 19:31236–31244

    Article  CAS  PubMed  Google Scholar 

  57. Saleh G, Gatti C, Presti LL (2012) Comput Theor Chem 998:148–163

    Article  CAS  Google Scholar 

  58. Lefebvre C, Khartabil H, Boisson JC, Contreras-García J, Piquemal JP, Hénon E (2018) ChemPhysChem 19:724–735

    Article  CAS  PubMed  Google Scholar 

  59. Contreras-García J, Boto RA, Izquierdo-Ruiz F, Reva I, Woller T, Alonso M (2016) Theor Chem Acc 135:242

    Article  Google Scholar 

  60. Lu T, Chen F (2012) J Comput Chem 33:580–592

    Article  PubMed  Google Scholar 

  61. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  62. Zhao Y, Truhlar DG (2008) J Chem Phys 128:184109

  63. Li Z, Couzijn EPA, Zhang X (2012) Chem Commun 48:9864–9866

    Article  CAS  Google Scholar 

  64. Mardirossian N, Head-Gordon M (2016) J Chem Theory Comput 12:4303–4325

    Article  CAS  PubMed  Google Scholar 

  65. Champion J, Seydou M, Sabatié-Gogova A, Renault E, Montavon G, Galland N (2011) Phys Chem Chem Phys 13:14984–14992

    Article  CAS  PubMed  Google Scholar 

  66. Champion J, Sabatie-Gogova A, Bassal F, Ayed T, Alliot C, Galland N, Montavon G (2013) J Phys Chem A 117:1983–1990

    Article  CAS  PubMed  Google Scholar 

  67. Assaba IM, Rahali S, Belhocine Y, Allal H (2021) J Mol Struct 1227:129696

  68. Belhocine Y, Bouhadiba A, Rahim M, Nouar L, Djilani I, Khatmi DE (2018) Macroheterocycles 11:203–209

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Seyfeddine Rahali: Conceptualization; Formal analysis; Writing — original draft; Investigation. Youghourta Belhocine: Formal analysis; Software; review and editing; Supervision; Validation. Hamza Allal: Methodology; Software; Visualization. Abdelaziz Bouhadiba: Data curation; Formal analysis. Ibtissem Meriem Assaba: Writing — original draft. Mahamadou Seydou: review and editing. All authors provided critical feedback and helped shape the research, analysis, and manuscript.

Corresponding author

Correspondence to Seyfeddine Rahali.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 643 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahali, S., Belhocine, Y., Allal, H. et al. A DFT investigation of the host–guest interactions between boron-based aromatic systems and β-cyclodextrin. Struct Chem 33, 195–206 (2022). https://doi.org/10.1007/s11224-021-01835-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01835-6

Keywords

Navigation