Skip to main content
Log in

A structural chemistry practitioner: a fox rather than a hedgehog. Reversibility of Friedel–Crafts acyl rearrangements

  • Review Article
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A retrospective review of reversibility revealed in Friedel–Crafts acyl rearrangements of polycyclic aromatic ketones derived from the polycyclic aromatic hydrocarbons naphthalene, phenanthrene, anthracene, fluorene, pyrene, and fluoranthene is presented. The reactions were carried out in polyphosphoric acid (PPA). A distinction is made between completely reversible reaction (equilibrium reaction) denoted by ⇌ and reaction, both directions denoted by . Reaction, both direction is considered reversible reaction, not completely reversible reaction. Gore’s 1955 proposition that Friedel–Craft acylation of reactive hydrocarbons is a reversible process has been verified. Complete reversibility has been revealed in ortho para acyl rearrangements of fluorofluorenones (1FFL ⇌ 3FFL) and in dibenzofluorenones (DBahFL ⇌ DBbhFL). Both cases are intramolecular acyl rearrangements. The majority of reversible intramolecular and intermolecular Friedel–Crafts acyl rearrangements are formally “reaction, both directions,” e.g., dibenzoylpyrenes 1,6-Bz2PY ⇆ 1,8-Bz2PY. Acyl rearrangements and reversibility in Friedel–Crafts acylations are associated with thermodynamic control. However, sometimes kinetic control wins out over thermodynamic control. Polycyclic aromatic ketones in which the carbonyl group is coplanar with the aromatic nucleus may undergo Friedel–Crafts acyl rearrangements. The reversibility concept has been applied to the synthesis of new and known linearly annelated polycyclic aromatic ketones by intramolecular Friedel–Crafts rearrangements of their angularly annelated constitutional isomers. A linkage between reversible Friedel–Crafts acyl rearrangements in PPA and the Scholl reaction has been established in benzoylnaphthalenes and in dibenzoylpyrenes. As a structural chemistry practitioner, the scientific personality of the first author belongs to the foxes, rather than to the hedgehogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Fig. 2
Scheme 11
Fig. 3
Scheme 12
Scheme 13
Scheme 14
Fig. 4
Fig. 5
Scheme 15
Fig. 6
Scheme 16
Scheme 17
Scheme 18
Scheme 19

Similar content being viewed by others

Notes

  1. Πόλλ' οἰδ' ἀλὰπηξ ἀλλ' ἐχῖνος ἕν μέγα. (Diehl, Frag. 103.)

    Isaiah Berlin, “The Hedgehog and the Fox: An Essay on Tolstoy’s View of History,” 1953

  2. First-person singular pronouns refer to Israel Agranat.

  3. It is my (IA) educated guess that the referee who wrote the above report is the late Professor George A Olah, Nobel laureate. I have been young and now am old (Psalms 37:25) and I have just added another sin to the many sins I have committed. Maybe, mitigating circumstances will be found to my disclosing this confidential report: more than two score years have passed since the communication has been reviewed and published and the legendary Professor Olah passed away in 2018 in his 90th year.

References

  1. Berlin I (1953) The hedgehog and the fox: an essay on Tolstoy’s view of history. Weidenfeld and Nicolson, London

    Google Scholar 

  2. Wang Z (2009) Friedel-Crafts acylation. In: Comprehensive organic name reactions and reagents, part 1, ch. 248. Wiley, New York, pp 1126–1130

  3. Klumpp DA (2016) Electrophilic aromatic substitution: mechanism. In: Mortier J (ed) Arene chemistry: reaction, mechanisms and methods for aromatic compounds, Ch. 1. Wiley, New York, pp 3–31

  4. Zubenko AA, Kartsev VG, Morkovnik AS, Divaeva LN, Suponitsky KV (2016). Chem Select 1:2560–2564

    CAS  Google Scholar 

  5. Gore PH (1955). Chem Rev 55:229–281

    CAS  Google Scholar 

  6. Olah GA (1973) Friedel-Crafts chemistry. New York, Wiley Interscience, p 102

    Google Scholar 

  7. Agranat I (1961) Experiments in the 5-dibenz[b,f]azepine series, M.Sc. Thesis, The Hebrew University of Jerusalem (in Hebrew)

  8. Bopp B, Biel JH (1974) Antidepressant drugs. Life Sci 14:415–423

    CAS  PubMed  Google Scholar 

  9. Bergmann ED, Rabinovitz M, Agranat I (1962). Bull Res Council Israel 11A:149–158

    Google Scholar 

  10. Pogodin S, Biedermann PU, Agranat I (2019) Struct Chem 30:815:825

  11. Agranat I (1966) Studies in the series of the pseudoaromatic hydrocarbons, Ph.D. Thesis, The Hebrew University of Jerusalem (in Hebrew)

  12. Bergmann ED, Ikan R (1963) J Org Chem 28:3341–3343

  13. Agranat I, Avnir D (1973). J C S Chem Comm 9:362–363

    Google Scholar 

  14. Gore PH (1964) Aromatic ketone synthesis. In: Olah GA (ed) Friedel–Crafts and related reactions, vol III, part 1. John Wiley & Sons, London, pp 1–381

    Google Scholar 

  15. Asscher Y, Agranat I (1980). J Org Chem 45:3364–3366

  16. Agranat I, Shih Y-S (1974). Synthetic Commun 4:119–126

    CAS  Google Scholar 

  17. Bergmann ED, Agranat I (1971) J Chem Soc (C) 3532-3536

  18. Asscher Y, Avnir D, Rotman A, Agranat I (1982). J Pharm Sci 71:122–124

    CAS  PubMed  Google Scholar 

  19. Wang Z (2009) Haworth synthesis (Haworth phenanthrene synthesis). In: Comprehensive organic name reactions and reagents, part 2, ch. 299. Wiley, New York, pp 1342–1346

  20. Finar IL (1973) Organic chemistry vol 1: the fundamental principles 6th edn. Longman, London, p 819

    Google Scholar 

  21. Johnson WS (1944). Org React 2:114–177

    Google Scholar 

  22. Bendas H, Djerassi C (1956). J Am Chm Soc 78:2474–2476

    CAS  Google Scholar 

  23. Agranat I, Shih Y-S (1974) Synthesis, 865-867

  24. Agranat I, Shih Y-S (1976). J Chem Edu 53:488–489

    CAS  Google Scholar 

  25. Weizmann Ch, Bergmann E. Bergmann, F (1935) J Chem Soc 1367–1370

  26. Weizmann Ch, Bergmann E (1938) Polycyclic aromatic hydrocarbons. Scripta Academica Heirosolymitana, Jerusalem, pp 1–32

  27. Wang Z (2009) Hayashi rearrangement. In: Comprehensive organic name reactions and reagents, part 2, ch. 300. Wiley, New York, pp 1347–1349

  28. Hayashi M (1927) J Chem Soc, 2516–2527

  29. Newman MS (1972). Acc Chem Res 5:354–360

    CAS  Google Scholar 

  30. Ternay AL (1976) Contemporary organic chemistry. W. B. Saunders Company, Philadelphia, p 455

    Google Scholar 

  31. Norman ROC, Taylor R (1965) Electrophilic substitution in benzenoid compounds, ch. 6. Elsevier, London, p 174

    Google Scholar 

  32. Buehler CA, Pearson DE (1970) Friedel-Crafts and related acylations, survey of organic synthesis, ch. 11. C. Wiley Interscience, New York, p 651

    Google Scholar 

  33. Pearson DE, Buehler CA (1971) Synthesis 455-477

  34. Gore PH (1974) Chem Industry 727–731

  35. Andreou AD, Gore PH, Morris FC (1978). J C S Chem Comm 14:271–272

  36. Dowdy D, Gore PH, Waters DN (1991). J Chem Soc Perkin Transactions 2:1149–1159

    Google Scholar 

  37. Heaney H (1991) The intramolecular aromatic Friedel-Crafts reaction. In: Trost BM, Fleming I (eds-in-chief), Heathcock CH (vol ed) Comprehensive organic synthesis, vol 2, Pergamon Press, Oxford, pp 753–768

  38. Jensen FR (1957). J Am Chem Soc 79:1226–1231

  39. Agranat I, Shih Y-S, Bentor Y (1974). J Am Chem Soc 96:1259

    CAS  Google Scholar 

  40. Pogodin S, Cohen S, Mala’bi T, Agranat I (2011) Polycyclic aromatic ketones—a crystallographic and theoretical study of acetylanthracenes. In: Chandrasekaran A (ed) Current trends in X-ray crystallography, ch. 1. InTech, New York, pp 3–44

  41. McNaught AD, Wilkinson A (1997) Chemical equilibrium, IUPAC compendium of chemical terminology. The “gold book” 2nd edn. Blackwell scientific publications, Oxford XML on-line corrected version: http://goldbook.iupac.org (2006-) created by M. Nic, J. Jirat, B. Kosata; updates compiled by a. Jenkins. ISBN 0- 9678550-9-8. https://doi.org/10.1351/goldbook. Last update: 2014-02-24; version: 2.3.3. DOI of this term: https://doi.org/10.1351/goldbook.C01023

  42. Agranat I, Oded YN, Mala'bi T, Cohen S, Pogodin S (2019). Struct Chem 30:1579–1610

    CAS  Google Scholar 

  43. Frangopol M, Genunche A, Frangopol PT, Balaban AT (1964). Tetrahedron 20:1881–1888

    CAS  Google Scholar 

  44. Nenitzescu CD, Balaban AT (1964) Title in: Aliphatic acylations Olah GA (ed) Friedel–Crafts and related reactions, vol 3, part 2, John Wiley & Sons, London, pp 1033–1152

  45. Balaban AT (1966) Deacylation of non-conjugated ketones and the reversibility of C-acylations in: Omagiu Acad. Prof. Raluca Ripan, Dragulesea, C., pp 103–109, Editura Academiei Republicii Socialiste Romania, Bucharest

  46. Effenberger F, Klenk H, Reiter PL (1973) Angew Chem Internat Ed, 12:775–776

  47. Adams CJ, Earle MJ, Roberts G, Seddon KR (1998). Chem Commun 34:2097–2098

    Google Scholar 

  48. Okamoto A, Yonezawa N (2009). Chem Lett 38:914–915

    CAS  Google Scholar 

  49. Okamoto A, Yonezawa N (2015). J Synth Org Chem 73:339–360

    CAS  Google Scholar 

  50. Titinchi SJJ., Kamounah FS, Abbo HS. Hammerich O (2008) ARKIVOC xiii:91–105

  51. Levy L, Pogodin S, Cohen S, Agranat I (2007). Lett Org Chem 4:314–318

    CAS  Google Scholar 

  52. Mala'bi T, Pogodin S, Agranat I (2009). Lett Org Chem 6:237–241

    CAS  Google Scholar 

  53. Mala'bi T, Pogodin S, Agranat I (2015). Lett Org Chem 12:324–331

    CAS  Google Scholar 

  54. Mala'bi T, Pogodin S, Agranat I (2011) Tetrahedron Lett 52:1854–1857

  55. Eiglmeier K (1974) DE Pat 2,262,857 (A1) (June 27, 1974); Eiglmeyer K (1975) GB Pat 1,395,279 (A) (May 21, 1975); Eiglmeier K (1975) US Pat 3,865,879 (A) (Feb 11, 1975)

  56. Agranat I, Bentor Y, Shih Y-S (1977). J Am Chem Soc 99:7068–7070

    CAS  Google Scholar 

  57. Sheppard WA, Sharts CM (1969) Organic fluorine chemistry, Benjamin, New York, pp 5:6– 34

  58. Brown HC, Marino G (1962). J Am Chem Soc 84:1658–1661

    CAS  Google Scholar 

  59. Luss HR, Smith DL (1972) Acta Cryst B28:884–889

  60. Mala’bi T, Pogodin S, Cohen S, Agranat I (2013). RSC Adv 3:21797–21810

    Google Scholar 

  61. Vollmann V, Becker H, Corell M, Stresch H (1937). Justus Liebigs Ann Chem 531:1–159

  62. Casas-Solvas JM, Howgego JD, Davis AP (2014) Org. Biomol. Chem 12:212–232

  63. Laali KK, Okazaki T, Hansen PE (2000) J Org Chem 65:3816-3828

  64. Rajagopal SK, Philip AM, Nagarajan K, Hariharan M (2014). Chem Commun 50:8644–8647

    CAS  Google Scholar 

  65. Rajagopal SK, Reddy VS, Hariharan M (2016). CrystEngComm 18:5089–5094

    CAS  Google Scholar 

  66. Zhang Y, He B, Liu J, Hu S, Pan L, Zhao Z, Tang BZ (2018). Phys Chem Chem Phys 20:9922–9929

    CAS  PubMed  Google Scholar 

  67. Hidmi T, Pogodin S, Bogoslavsky B, Agranat I (2018). Struct Chem 29:97–111

    CAS  Google Scholar 

  68. Coulson CA, Rushbrooke GS (1940). Proc Cambridge Phil Soc 36:193–200

    CAS  Google Scholar 

  69. Agranat I, Pogodin S, Hidmi T (2015). Struct Chem 26:121–135

    CAS  Google Scholar 

  70. Agranat I, Mala'bi T, Oded YN, Daniel Kraus H (2020). Struct Chem 31:47–60

    CAS  Google Scholar 

  71. Campbell N, Leadill WK, Wilshire JFK (1951). J Chem Soc 1951:1404–1406

    Google Scholar 

  72. Campbell N, Easton WW (1949). J Chem Soc 1949:340–345

    Google Scholar 

  73. Albrecht WL, Fleming RW, Horgan SW, Kihm JC, Mayer GD (1974). J Med Chem 17:886–889

    CAS  PubMed  Google Scholar 

  74. Mala'bi T, Cohen S, Pogodin S, Agranat I (2017). Struct Chem 28:511–526

  75. Wang Z (2009) Scholl reaction (Scholl condensation). Comprehensive organic name reactions and reagents. Chapter 569, part 3. Wiley, pp 2518–2522

  76. Scholl R, Seer C (1912). Justus Liebigs Ann Chem 394:111–177

    Google Scholar 

  77. Wu J, Pisula W, Müllen K (2007). Chem Rev 107:718–747

    CAS  PubMed  Google Scholar 

  78. Kränzlein G, Vollmann H (1931) DE pat. 518,316 (Dec. 31,1931)

  79. Kränzlein G,Vollmann H, Diefenbach E (1932) DE pat. 555,180,(July 19, 1932)

  80. Balaban AT, Nenitzescu CD (1964) Dehydrogenation condensations of aromatics (Scholl and related reactions). In: Olah GA (ed) Friedel-Crafts and related reactions. 2, part II. Wiley Intersceince, New York, pp 979–1047

  81. Oded YN, Pogodin S, Agranat I (2016). J Org Chem 81:11389–11393

    CAS  PubMed  Google Scholar 

  82. Liljenberg M, Brinck T, Herschend B, Rein T, Rockwell G, Svensson M (2010). J Org Chem 75:4696–4705

    CAS  PubMed  Google Scholar 

  83. Brinck T, Liljenberg M (2016) The use of quantum chemistry for mechanistic analyses of SEAr reactions. In: Mortier J (ed) Arene chemistry: reaction, mechanisms and methods for aromatic compounds, Ch. 4. Wiley, New York, pp. 83–105

  84. Müller P (1994). Glossary of terms used in physical organic chemistry (IUPAC Recommendations 1994) Pure Appl Chem 66:1077–1184

  85. Cohen RE, Cvitas T, Frey JG, Holmström B, Kuchitsu K, Marquardt R, Mills I, Pavese F, Quack M, Stohner J, Strauss HL, Takami M, Thor AJ (2007) Quantities, units and symbols in physical chemistry. IUPAC Green Book. 3rd edn 2nd Printing. IUPAC & RSC Publishing, Cambridge, p 52

  86. Wang S, Zhang Z, Zhang H, Rajan AG, Xu N ,Yang Y, Zeng Y ,Liu P, Zhang X , Mao Q, He Y, Zhao J, Li B-G, Strano M.S, Wang W-J (2019). Matter 1592–1605

  87. Lindsey AS, Jeskey H (1957). Chem Rev 57:583–620

  88. Markovic S, Durovic I, Markovic Z (2015). Theor Chem Acc 134:45

  89. Marcovic S, Durovic I, Markovic Z (2008). Monatsh Chem 139:1169–1174

  90. Marcovic Z, Markovic S, Durovic I (2008). Monatsh Chem 139:329–335

    Google Scholar 

  91. Minkin VI, Olekhnovich LP, Zhdanov YA (1981). Acc Chem Res 14:210–217

    CAS  Google Scholar 

  92. Minkin VI (1989). Pure Appl Chem 61:661–672

    CAS  Google Scholar 

  93. Minkin VI (1985). Sov Sci Rev B Chem 7:51–98

    Google Scholar 

  94. Moss GP (1996) Basic terminology of stereochemistry (IUPAC recommendation 1996) Pure & Appl. Chem 68:2193–2222

    CAS  Google Scholar 

  95. Testa B, Caldwell J, Kisakurek MV (eds) (2014) Organic stereochemistry: guiding principle and biomedicinal relevance, VHCA, Verlag Helvetica Chim Acta, Zurich and Wiley-VCH, Weinheim, pp 78–79 and 376

  96. IUPAC Blue Book, Nomenclature of organic chemistry – IUPAC recommendations and preferred names 2013 (2013), Chapter P-9, “Specification of configurations and conformations”, pp. 1156–1292, Royal Society of Chemistry, Cambridge, U.K.

  97. Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, MontgomeryJr, JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB,Ortiz JV, Cioslowski J, Fox DJ. Gaussian, Inc., Wallingford CT(2013)

  98. Carey FA, Sundberg RJ (2007) Advanced organic chemistry 5th edition, Part A: structure and mechanism, Springer, New York, p 792

  99. Pasteur L (1854), taken from a speech given in Dousi, 7th December1854, Louis Pasteur Vallery-Radot (eds.), Œuvres de Pasteur. Tome 7, Paris: éditeurs Masson, 1939, p. 131. Available online: https://gallica.bnf.fr/ark:/12148/bpt6k7363q/f137.image. Accessed 6 June 2020

  100. Merton RK, Barbar E (2004) The travels and adventures of serendipity: a study in sociological semantics and the sociology in science, Princeton University Press, Princeton and Oxford, pp162–163 and 170–183

Download references

Acknowledgments

Israel Agranat deeply thanks his M.Sc. and Ph.D. students and his other co-workers Yael Asscher, David Avnir, Yael Bentor, Paul Ulrich Biedermann, Benny Bogoslavski, Shmuel Cohen, Hanna Daniel Kraus, Taghreed Hidmi, Liron Levy-Beladev, Tahani Malabi, Yaacov. Netanel Oded, Sergey Pogodin, and Yu-Shan Shih for their essential contributions reported in the present review. “R. Hanina said: I have learnt much from my teachers, and from my colleagues more than from my teachers, but from my students more than from them all” (Babylonian Talmud, Seder Mo‘ed. Tractate Ta'anith, p. 7a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Agranat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

DEDICATION: In memoriam Professor Peter Henry Gore (1926–2017). Born Heinz Peter Goldfeld in Berlin, he was forced to leave Nazi Germany on the Kindertransport to England in 1939. Gore earned his Ph.D. in Organic Chemistry at Imperial College, was awarded D.Sc. by the University of London, and became Professor of Organic Chemistry at Brunel University (UK). Professor Gore was a Master of Friedel–Crafts Acylations, a brilliant scientist and teacher, and a passionate lover of music. Alas for those who are lost but not forgotten.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agranat, I., Mala’bi, T. A structural chemistry practitioner: a fox rather than a hedgehog. Reversibility of Friedel–Crafts acyl rearrangements. Struct Chem 31, 1635–1659 (2020). https://doi.org/10.1007/s11224-020-01593-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01593-x

Keywords

Navigation