Skip to main content
Log in

Intermolecular interactions and charge density distribution of endocrine-disrupting molecules (xenoestrogens) with ERα: QM/MM perspective

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Xenoestrogens are endocrine-disrupting chemicals which are mimicking the action of estrogens in the active site of estrogen receptor-α (ERα). Bisphenol A, nonylphenol, and octylphenol are the few endocrine chemicals called xenoestrogens that bind to the estrogen receptor. Several reports outline the mimic action of xenoestrogens in the active site of ERα that these molecules bind to ERα and has high estrogenic activity as the estrogens does and how they induce the cancer disease. Binding affinity of these molecules to the receptor ERα always rely on their conformation and the interaction with the nearby active site amino acids of the receptor and the charge density distribution. The molecular docking, QM/MM-based charge density analysis of bisphenol A (BPA) has been performed, which gives the conformation, charge density distribution, and the electrostatic properties in the presence of active site amino acid residues of ERα. The QM/MM charge density analysis of active site form of BPA reveals the nature of their chemical bonding and the strength of interactions with the neighboring residues present in the active site of ERα. The electrostatic potential map of BPA in the active site shows the reactive locations in the molecules and the corresponding interactions with ERα. The global reactivity descriptors show the reactive nature and the toxicity of the molecule. This study confirms that the BPA molecule binds to the active site amino acids of ERα as the estrogen molecule 17β-estradiol binds, which leads to the cell proliferation in the breast cancer cells and inhibits apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. National Institute of Environmental Health Sciences, Endocrine Disruptors (2014). http://www.niehs.nih.gov/health/topics/agents/endocrine/

  2. Gore AC, Chappell VA, Fenton SE et al (2015) Executive Summary to EDC-2: The Endocrine Society’s second Scientific Statement on endocrine-disrupting chemicals. Endocr Rev 36:593–602. https://doi.org/10.1210/er.2015-1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Crisp TM, Clegg ED, Cooper RL et al (1998) Environmental Endocrine Disruption: An Effects Assessment and Analysis*. Environ Health Perspect 1:6–11. https://doi.org/10.1289/ehp.98106s111

    Article  Google Scholar 

  4. Krimsky S (2001) An epistemological inquiry into the endocrine disruptor thesis. Ann N Y Acad Sci 948:130–141

    Article  CAS  PubMed  Google Scholar 

  5. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC et al (2009) Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocr Rev 30:293–342. https://doi.org/10.1210/er.2009-0002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thomas Zoeller R, Brown TR, Doan LL et al (2012) Endocrine-disrupting chemicals and public health protection: A statement of principles from the Endocrine Society. Endocrinology 153:4097–4110. https://doi.org/10.1210/en.2012-1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Giulivo M, Lopez de Alda M, Capri E, Barceló D (2016) Human exposure to endocrine disrupting compounds: Their role in reproductive systems, metabolic syndrome and breast cancer. A review. Environ Res 151:251–264. https://doi.org/10.1016/j.envres.2016.07.011

    Article  CAS  PubMed  Google Scholar 

  8. Kerdivel G, Habauzit D, Pakdel F (2013) Assessment and Molecular Actions of Endocrine-Disrupting Chemicals That Interfere with Estrogen Receptor Pathways. Int J Endocrinol. https://doi.org/10.1155/2013/501851

  9. Shanle EK, Xu W (2011) Endocrine Disrupting Chemicals Targeting Estrogen Receptor Signaling : Identification and Mechanisms of Action. Chem Res Toxiciol 24:6–19. https://doi.org/10.1021/tx100231n.Endocrine

    Article  CAS  Google Scholar 

  10. Sanyal S, Kim JY, Kim HJ et al (2002) Differential regulation of the orphan nuclear receptor Small Heterodimer Partner (SHP) gene promoter by orphan nuclear receptor ERR isoforms. J Biol Chem 277:1739–1748. https://doi.org/10.1074/jbc.M106140200

    Article  CAS  PubMed  Google Scholar 

  11. Schreiber SN, Knutti D, Brogli K et al (2003) The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor α (ERRα). J Biol Chem 278:9013–9018. https://doi.org/10.1074/jbc.M212923200

    Article  CAS  PubMed  Google Scholar 

  12. Evans R (1988) The steroid and thyroid hormone receptor superfamily. Science (80-) 240:889–895. https://doi.org/10.1126/science.3283939

    Article  CAS  Google Scholar 

  13. White R, Parker MG (1998) Molecular mechanisms of steroid hormone action. Endocr Relat Cancer 5:1–14. https://doi.org/10.1677/erc.0.0050001

    Article  CAS  Google Scholar 

  14. Beato M, Herrlich P, Schütz G (1995) Steroid hormone receptors: Many Actors in search of a plot. Cell 83:851–857. https://doi.org/10.1016/0092-8674(95)90201-5

    Article  CAS  PubMed  Google Scholar 

  15. McKenna NJ, Xu J, Nawaz Z et al (1999) Nuclear receptor coactivators: multiple enzymes, multiple complexes, multiple functions. J Steroid Biochem Mol Biol 69:3–12. https://doi.org/10.1016/S0960-0760(98)00144-7

    Article  CAS  PubMed  Google Scholar 

  16. Klinge CM (2000) Estrogen receptor interaction with co-activators and co-repressors☆. Steroids 65:227–251. https://doi.org/10.1016/S0039-128X(99)00107-5

    Article  CAS  PubMed  Google Scholar 

  17. Lonard DM, Nawaz Z, Smith CL, O’Malley BW (2000) The 26S Proteasome Is Required for Estrogen Receptor-α and Coactivator Turnover and for Efficient Estrogen Receptor-α Transactivation. Mol Cell 5:939–948. https://doi.org/10.1016/S1097-2765(00)80259-2

    Article  CAS  PubMed  Google Scholar 

  18. Kumar R, Thompson EB (1999) The structure of the nuclear hormone receptors. Steroids 64:310–319. https://doi.org/10.1016/S0039-128X(99)00014-8

    Article  CAS  PubMed  Google Scholar 

  19. McEwan IJ (2009) Nuclear Receptors: One Big Family, in: Methods Mol. Biol., Humana Press, pp 3–18. https://doi.org/10.1007/978-1-60327-575-0_1

  20. Barnett P, Tabak HF, Hettema EH (2000) Nuclear receptors arose from pre-existing protein modules during evolution. Trends Biochem Sci 25:227–228. https://doi.org/10.1016/S0968-0004(00)01579-6

    Article  CAS  PubMed  Google Scholar 

  21. Couse JF, Lindzey J, Grandien K et al (1997) Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse. Endocrinology 138:4613–4621. https://doi.org/10.1210/endo.138.11.5496

    Article  CAS  PubMed  Google Scholar 

  22. Kuiper GGJ, Gustafsson J-Å (1997) The novel estrogen receptor- β subtype: potential role in the cell- and promoter-specific actions of estrogens and anti-estrogens. FEBS Lett 410:87–90. https://doi.org/10.1016/S0014-5793(97)00413-4

    Article  CAS  PubMed  Google Scholar 

  23. Kuiper GGJM, Carlsson B, Grandien K et al (1997) Comparison of the Ligand Binding Specificity and Transcript Tissue Distribution of Estrogen Receptors α and β. Endocrinology 138:863–870. https://doi.org/10.1210/endo.138.3.4979

    Article  CAS  PubMed  Google Scholar 

  24. Ascenzi P, Bocedi A, Marino M (2006) Structure–function relationship of estrogen receptor α and β: Impact on human health. Mol Asp Med 27:299–402. https://doi.org/10.1016/j.mam.2006.07.001

    Article  CAS  Google Scholar 

  25. Ruff M, Gangloff M, Marie Wurtz J, Moras D (2000) Estrogen receptor transcription and transactivation Structure-function relationship in DNA- and ligand-binding domains of estrogen receptors. Breast Cancer Res 2:353. https://doi.org/10.1186/bcr80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Anderson WF, Chatterjee N, Ershler WB, Brawley OW (2002) Estrogen Receptor Breast Cancer Phenotypes in the Surveillance, Epidemiology, and End Results Database. Breast Cancer Res Treat 76:27–36. https://doi.org/10.1023/A:1020299707510

    Article  CAS  PubMed  Google Scholar 

  27. Yager JD, Davidson NE (2006) Estrogen Carcinogenesis in Breast Cancer. N Engl J Med 354:270–282. https://doi.org/10.1056/NEJMra050776

    Article  CAS  PubMed  Google Scholar 

  28. McGuire WL (1978) Hormone receptors: their role in predicting prognosis and response to endocrine therapy. Semin Oncol 5:428–433

    CAS  PubMed  Google Scholar 

  29. Wolff MS, Engel SM, Berkowitz GS et al (2008) Prenatal Phenol and Phthalate Exposures and Birth Outcomes. Environ Health Perspect 116:1092–1097. https://doi.org/10.1289/ehp.11007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cao X-L, Perez-Locas C, Dufresne G et al (2011) Concentrations of bisphenol A in the composite food samples from the 2008 Canadian total diet study in Quebec City and dietary intake estimates. Food Addit Contam Part A 28:791–798. https://doi.org/10.1080/19440049.2010.513015

    Article  CAS  Google Scholar 

  31. Cao X-L, Corriveau J, Popovic S (2010) Sources of low concentrations of bisphenol A in canned beverage products. J Food Prot 73:1548–1551

    Article  CAS  PubMed  Google Scholar 

  32. Kloukos D, Pandis N, Eliades T (2013) In vivo bisphenol-a release from dental pit and fissure sealants: a systematic review. J Dent 41:659–667. https://doi.org/10.1016/j.jdent.2013.04.012

    Article  CAS  PubMed  Google Scholar 

  33. Duty SM, Mendonca K, Hauser R et al (2013) Potential sources of bisphenol A in the neonatal intensive care unit. Pediatrics 131:483–489. https://doi.org/10.1542/peds.2012-1380

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rubin BS (2011) Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol 127:27–34. https://doi.org/10.1016/j.jsbmb.2011.05.002

    Article  CAS  PubMed  Google Scholar 

  35. Rubin BS, Lenkowski JR, Schaeberle CM et al (2006) Evidence of Altered Brain Sexual Differentiation in Mice Exposed Perinatally to Low, Environmentally Relevant Levels of Bisphenol A. Endocrinology 147:3681–3691. https://doi.org/10.1210/en.2006-0189

    Article  CAS  PubMed  Google Scholar 

  36. Alonso-Magdalena P, Ropero AB, Soriano S et al (2012) Bisphenol-A acts as a potent estrogen via non-classical estrogen triggered pathways. Mol Cell Endocrinol 355:201–207. https://doi.org/10.1016/j.mce.2011.12.012

    Article  CAS  PubMed  Google Scholar 

  37. Lee H-S, Park E-J, Oh J-H et al (2014) Bisphenol A exerts estrogenic effects by modulating CDK1/2 and p38 MAP kinase activity. Biosci Biotechnol Biochem 78:1371–1375. https://doi.org/10.1080/09168451.2014.921557

    Article  CAS  PubMed  Google Scholar 

  38. Kim J, Kang E-J, Park M-N et al (2015) The adverse effect of 4-tert-octylphenol on fat metabolism in pregnant rats via regulation of lipogenic proteins. Environ Toxicol Pharmacol 40:284–291. https://doi.org/10.1016/j.etap.2015.06.020

    Article  CAS  PubMed  Google Scholar 

  39. Kim J, Kang E-J, Park M-N et al (2014) Adverse effects of 4-tert-octylphenol on the production of oxytocin and hCG in pregnant rats. Lab Anim Res 30:123. https://doi.org/10.5625/lar.2014.30.3.123

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kim SK, Kim JH, Lee HJ, Yoon YD (2007) Octylphenol reduces the expressions of steroidogenic enzymes and testosterone production in mouse testis. Environ Toxicol 22:449–458. https://doi.org/10.1002/tox.20280

    Article  CAS  PubMed  Google Scholar 

  41. Watanabe H (2004) Tissue-specific estrogenic and non-estrogenic effects of a xenoestrogen, nonylphenol. J Mol Endocrinol 33:243–252. https://doi.org/10.1677/jme.0.0330243

    Article  CAS  PubMed  Google Scholar 

  42. In S-J, Kim S-H, Go R-E et al (2015) Benzophenone-1 and Nonylphenol Stimulated MCF-7 Breast Cancer Growth by Regulating Cell Cycle and Metastasis-Related Genes Via an Estrogen Receptor α-Dependent Pathway. J Toxicol Environ Heal Part A 78:492–505. https://doi.org/10.1080/15287394.2015.1010464

    Article  CAS  Google Scholar 

  43. Soto AM, Justicia H, Wray JW, Sonnenschein C (1991) p-Nonyl-phenol: an estrogenic xenobiotic released from “modified” polystyrene. Environ Health Perspect 92:167–173. https://doi.org/10.1289/ehp.9192167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ren L, Marquardt MA, Lech JJ (1997) Estrogenic effects of nonylphenol on pS2, ER and MUC1 gene expression in human breast cancer cells-MCF-7. Chem Biol Interact 104:55–64. https://doi.org/10.1016/S0009-2797(97)03767-8

    Article  CAS  PubMed  Google Scholar 

  45. Lutz I, Kloas W (1999) Amphibians as a model to study endocrine disruptors: I. Environmental pollution and estrogen receptor binding. Sci Total Environ 225:49–57. https://doi.org/10.1016/S0048-9697(99)80016-3

    Article  CAS  PubMed  Google Scholar 

  46. Laws SC (2000) Estrogenic Activity of Octylphenol, Nonylphenol, Bisphenol A and Methoxychlor in Rats. Toxicol Sci 54:154–167. https://doi.org/10.1093/toxsci/54.1.154

    Article  CAS  PubMed  Google Scholar 

  47. Diel P, Olff S, Schmidt S, Michna H (2002) Effects of the environmental estrogens bisphenol A, o,p′-DDT, p-tert-octylphenol and coumestrol on apoptosis induction, cell proliferation and the expression of estrogen sensitive molecular parameters in the human breast cancer cell line MCF-7. J Steroid Biochem Mol Biol 80:61–70. https://doi.org/10.1016/S0960-0760(01)00173-X

    Article  CAS  PubMed  Google Scholar 

  48. Herath CB, Watanabe G, Katsuda S et al (2001) Exposure of neonatal female rats to p-tert-octylphenol disrupts afternoon surges of luteinizing hormone, follicle-stimulating hormone and prolactin secretion, and interferes with sexual receptive behavior in adulthood. Biol Reprod 64:1216–1224. https://doi.org/10.1095/biolreprod64.4.1216

    Article  CAS  PubMed  Google Scholar 

  49. Gregory M, Lacroix A, Haddad S et al (2009) Effects of chronic exposure to octylphenol on the male rat reproductive system. J Toxicol Environ Health A 72:1553–1560. https://doi.org/10.1080/15287390903232434

    Article  CAS  PubMed  Google Scholar 

  50. Mills N (2006) ChemDraw Ultra 10.0 CambridgeSoft, 100 CambridgePark Drive, Cambridge, MA 02140. www.cambridgesoft.com. Commercial Price: $1910 for download, $2150 for CD-ROM; Academic Price: $710 for download, $800 for CD-ROM. J Am Chem Soc 128:13649–13650. https://doi.org/10.1021/ja0697875

    Article  CAS  Google Scholar 

  51. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  52. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Pet GA, JAP (2004) Gaussian 03. paris press, paris

    Google Scholar 

  53. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222. https://doi.org/10.1007/BF00533485

    Article  CAS  Google Scholar 

  54. Glide (2014) Small-molecular drug discovery suite 2014-2,Version 6.3

  55. Induced Fit docking protocol (2014) Small-molecular drug discovery suite 2014-2, version 6.3.

  56. LigPrep. (2014) Schrödinger release 2014-2: LigPrep, version 3.0.

  57. Prime. (2014) Schrodinger release, 2014-2, Prime, version 3.6

  58. Maestro (2014) Schrodinger release 2014-2, Maestro, version 9.8.

  59. Keith TA (2017) AIMAll

  60. Bader RFW (1994) Atoms in Molecules A Quantum Theory, Clarendon Press, Oxford, New York

  61. Tibor Koritsanszky, Piero Macchi, Carlos Gatti, Luis J. Farrugia, P. R. Mallison, Volkov TR (2016) XD2016. A computer program package for multipole refinement and analysis of charge densities from diffraction data

  62. Stash A, Tsirelson V (2002) WinXPRO : a program for calculating crystal and molecular properties using multipole parameters of the electron density. J Appl Crystallogr 35:371–373. https://doi.org/10.1107/S0021889802003230

    Article  CAS  Google Scholar 

  63. Rarey M, Kramer B, Lengauer T (1999) Docking of hydrophobic ligands with interaction-based matching algorithms. Bioinformatics 15:243–250. https://doi.org/10.1093/bioinformatics/15.3.243

    Article  CAS  PubMed  Google Scholar 

  64. Shivakumar D, Williams J, Wu Y et al (2010) Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. J Chem Theory Comput 6:1509–1519. https://doi.org/10.1021/ct900587b

    Article  CAS  PubMed  Google Scholar 

  65. Shiau AK, Barstad D, Loria PM et al (1998) The Structural Basis of Estrogen Receptor/Coactivator Recognition and the Antagonism of This Interaction by Tamoxifen. Cell 95:927–937. https://doi.org/10.1016/S0092-8674(00)81717-1

    Article  CAS  PubMed  Google Scholar 

  66. D.A. Case, D.S. Cerutti, T.E. Cheatham, III, T.A. Darden, R.E. Duke, T.J. Giese, H. Gohlke, A.W. Goetz, D. Greene, N. Homeyer, S. Izadi, A. Kovalenko, T.S. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, D. Mermelstein, K.M. Merz, G. Monard, H. DMY and PAK (2014) AMBER14

  67. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260. https://doi.org/10.1016/j.jmgm.2005.12.005

    Article  CAS  PubMed  Google Scholar 

  68. Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174. https://doi.org/10.1002/jcc.20035

    Article  CAS  PubMed  Google Scholar 

  69. Maier JA, Martinez C, Kasavajhala K et al (2015) ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J Chem Theory Comput 11:3696–3713. https://doi.org/10.1021/acs.jctc.5b00255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Harrach MF, Drossel B (2014) Structure and dynamics of TIP3P, TIP4P, and TIP5P water near smooth and atomistic walls of different hydroaffinity. J Chem Phys 140:174501. https://doi.org/10.1063/1.4872239

    Article  CAS  PubMed  Google Scholar 

  71. Mark P, Nilsson L (2001) Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K. J Phys Chem A 105:9954–9960. https://doi.org/10.1021/jp003020w

    Article  CAS  Google Scholar 

  72. Essmann U, Perera L, Berkowitz ML et al (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593. https://doi.org/10.1063/1.470117

    Article  CAS  Google Scholar 

  73. Sengupta S, Obiorah I, Maximov PY et al (2013) Molecular mechanism of action of bisphenol and bisphenol A mediated by oestrogen receptor alpha in growth and apoptosis of breast cancer cells. Br J Pharmacol 169:167–178. https://doi.org/10.1111/bph.12122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhurova EA, Matta CF, Wu N et al (2006) Experimental and theoretical electron density study of estrone. J Am Chem Soc 128:8849–8861. https://doi.org/10.1021/ja061080v

    Article  CAS  PubMed  Google Scholar 

  75. Parrish D, Zhurova EA, Kirschbaum K, Pinkerton AA (2006) Experimental charge density study of estrogens: 17beta-estradiol.urea. J Phys Chem B 110:26442–26447. https://doi.org/10.1021/jp065638x

    Article  CAS  PubMed  Google Scholar 

  76. Zhurova EA, Zhurov VV, Kumaradhas P et al (2016) Charge Density and Electrostatic Potential Study of 16α,17β-Estriol and the Binding of Estrogen Molecules to the Estrogen Receptors ER α and ER β. J Phys Chem B 120:8882–8891. https://doi.org/10.1021/acs.jpcb.6b05961

    Article  CAS  PubMed  Google Scholar 

  77. Politzer P, Murray JS (2002) The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor Chem Accounts Theory. Comput Model (Theoretica Chim Acta) 108:134–142. https://doi.org/10.1007/s00214-002-0363-9

    Article  CAS  Google Scholar 

  78. Stalke D (2011) Meaningful Structural Descriptors from Charge Density. Chem - A Eur J 17:9264–9278. https://doi.org/10.1002/chem.201100615

    Article  CAS  Google Scholar 

  79. Gatti C (2005) Chemical bonding in crystals: new directions. Z Krist Cryst Mater 220:399–457. https://doi.org/10.1524/zkri.220.5.399.65073

    Article  CAS  Google Scholar 

  80. Zhu N, Klein Stevens CL, Stevens ED (2005) An experimental charge density study of mesulergine hydrochloride, a dopamine agonist. J Chem Crystallogr 35:13–22. https://doi.org/10.1007/s10870-005-1133-z

    Article  CAS  Google Scholar 

  81. Okulik N, Jubert AH (2004) Theoretical study on the structure and reactive sites of non-steroidal anti-inflammatory drugs. J Mol Struct THEOCHEM 682:55–62. https://doi.org/10.1016/j.theochem.2004.04.069

    Article  CAS  Google Scholar 

  82. Yearley EJ, Zhurova EA, Zhurov VV, Pinkerton AA (2007) Binding of genistein to the estrogen receptor based on an experimental electron density study. J Am Chem Soc 129:15013–15021. https://doi.org/10.1021/ja075211j

    Article  CAS  PubMed  Google Scholar 

  83. Desiraju GR (1995) Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis. Angew Chem Int Ed Eng 34:2311–2327

    Article  CAS  Google Scholar 

  84. Pauling L (1942) The Nature of the Chemical Bond and the Structure of Molecules and CrystalsSecond edn. Cornell University Press, Ithaca

    Google Scholar 

  85. Sarkar U, Padmanabhan J, Parthasarathi R et al (2006) Toxicity analysis of polychlorinated dibenzofurans through global and local electrophilicities. J Mol Struct THEOCHEM 758:119–125. https://doi.org/10.1016/j.theochem.2005.10.021

    Article  CAS  Google Scholar 

  86. Sen KD (1993) Chemical Hardness. Springer-Verlag, Berlin/Heidelberg

    Book  Google Scholar 

  87. Priyakumar UD, Sastry GN (2002) Theoretical Study of Silabenzene and Its Valence Isomers. Organometallics 21:1493–1499. https://doi.org/10.1021/om011001i

    Article  CAS  Google Scholar 

  88. Ghiasi R (2005) A computational study of the arsabenzenes: Structure, properties and aromaticity. J Organomet Chem 690:4761–4767. https://doi.org/10.1016/j.jorganchem.2005.07.069

    Article  CAS  Google Scholar 

  89. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity Index. J Am Chem Soc 121:1922–1924. https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

  90. Hazarika KK, Baruah NC, Deka RC (2009) Molecular structure and reactivity of antituberculosis drug molecules isoniazid, pyrazinamide, and 2-methylheptylisonicotinate: a density functional approach. Struct Chem 20:1079–1085. https://doi.org/10.1007/s11224-009-9512-2

    Article  CAS  Google Scholar 

  91. Parthasarathi R, Padmanabhan J, Subramanian V et al (2003) Chemical Reactivity Profiles of Two Selected Polychlorinated Biphenyls. J Phys Chem A 107:10346–10352. https://doi.org/10.1021/jp035620b

    Article  CAS  Google Scholar 

  92. Parthasarathi R, Padmanabhan J, Subramanian V, Maiti B, PKC (2004) Toxicity analysis of 33’44’5-pentachloro biphenyl through chemical reactivity and selectivity profiles. Curr Sci 86:535–542

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank C-DAC, Bangalore, for providing the GARUDA supercomputing facility.

Funding

CK is grateful to UGC-RGNF for providing the Senior Research Fellowship (SRF) to carry out this Research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumaradhas Poomani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chinnasamy, K., Poomani, K. Intermolecular interactions and charge density distribution of endocrine-disrupting molecules (xenoestrogens) with ERα: QM/MM perspective. Struct Chem 31, 1013–1028 (2020). https://doi.org/10.1007/s11224-019-01452-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01452-4

Keywords

Navigation