Skip to main content

Advertisement

Log in

C–H···O interaction between cation and anion in amino acid-based ionic liquids—A DFT study in gas and solvent phase

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The interaction between anions and cations within amino acid-based ionic liquids (AAILs) are studied in the gas phase and in three different solvents (DMSO, water, and formamide). Structural and topological analyses of ion pairs signify that they interact via C–H···O hydrogen bond. In gas and solvent phase, the aliphatic amino acids (anions) interact strongly with EMIM (1-ethyl-3-methylimidazolium) and BMIM (1-butyl-3-methylimidazolium) cations. Further, the interaction between amino acid and EMIM cation is stronger due to large charge transfer from the electronegative oxygen atoms (carbonyl group) of the amino acids to the C–H bond of the imidazole ring. All the C-H···O bonds observed between the ions are red shifted and strong due to large interaction energy. The major contribution to the interaction energy is from electrostatic and orbital energies. The implicit solvents tend to increase the H···O distance of the AAILs. The increase in the chain length of cations irrespective of phase meagerly decreases the interaction between the ions. From the solvation energy, the reaction between solvents and AAILs are exothermic. AAILs possess higher solvation energy in DMSO. Overall, ionic liquids are highly stable in the gas phase and moderately stable in the solvents due to C-H···O bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Grabowski SJ (2001) Ab initio calculations on conventional and unconventional hydrogen BondsStudy of the hydrogen bond strength. J Phys Chem A 105(47):10739–10746. https://doi.org/10.1021/jp011819h

    Article  CAS  Google Scholar 

  2. Wang J, Gu J, Hossain M, Leszczynski J (2016) Theoretical studies on hydrogen bonds in anions encapsulated by an Azamacrocyclic receptor. Crystals 6(3):31

    Article  Google Scholar 

  3. Series Editors (1999) In: Leszczynski J (ed) theoretical and computational chemistry, vol 8. Elsevier, p ii. https://doi.org/10.1016/S1380-7323(99)80765-1

  4. Karabulut S, Namli H, Kurtaran R, Yildirim LT, Leszczynski J (2014) Modeling the intermolecular interactions: molecular structure of N-3-hydroxyphenyl-4-methoxybenzamide. J Mol Graph Model 48:1–8. https://doi.org/10.1016/j.jmgm.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  5. Leszczynski J Computational chemistry: reviews of current trends. J Comput Chem. https://doi.org/10.1142/4481

  6. Pohorille A, Wilson MA, Chipot C, New MH, Schweighofer K (1999) Chapter 13—interactions of small molecules and peptides with membranes. In: Leszczynski J (ed) Theoretical and Computational Chemistry, vol 8. Elsevier, pp 485–535. https://doi.org/10.1016/S1380-7323(99)80088-0

  7. Sheng Y, Leszczynski J, Garcia AA, Rosario R, Gust D, Springer J (2004) Comprehensive theoretical study of the conversion reactions of Spiropyrans: substituent and solvent effects. J Phys Chem B 108(41):16233–16243. https://doi.org/10.1021/jp0488867

    Article  CAS  Google Scholar 

  8. Sokalski WA, Kędzierski P, Grembecka J, Dziekoński P, Strasburger K (1999) Chapter 10—theoretical tools for analysis and modelling electrostatic effects in biomolecules⋆. In: Leszczynski J (ed) Theoretical and Computational Chemistry, vol 8. Elsevier, pp 369–396. https://doi.org/10.1016/S1380-7323(99)80085-5

  9. Šponer J, Hobza P, Leszczynski J (1999) Chapter 3—computational approaches to the studies of the interactions of nucleic acid bases. In: Leszczynski J (ed) Theoretical and Computational Chemistry, vol 8. Elsevier, pp 85–117. https://doi.org/10.1016/S1380-7323(99)80078-8

  10. Zakrzewska K, Lavery R (1999) Chapter 12—modelling protein-DNA interactions. In: Leszczynski J (ed) Theoretical and Computational Chemistry, vol 8. Elsevier, pp 441–483. https://doi.org/10.1016/S1380-7323(99)80087-9

  11. Arunan E, Desiraju Gautam R, Klein Roger A, Sadlej J, Scheiner S, Alkorta I, Clary David C, Crabtree Robert H, Dannenberg Joseph J, Hobza P, Kjaergaard Henrik G, Legon Anthony C, Mennucci B, Nesbitt David J (2011) Definition of the hydrogen bond (IUPAC recommendations 2011). Pure Appl Chem 83. https://doi.org/10.1351/pac-rec-10-01-02

  12. Arunan E, Desiraju Gautam R, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Defining the hydrogen bond: an account (IUPAC technical report). Pure Appl Chem 83. https://doi.org/10.1351/pac-rep-10-01-01

  13. Desiraju GR (1996) The C−H···O hydrogen bond: structural implications and supramolecular design. Acc Chem Res 29(9):441–449. https://doi.org/10.1021/ar950135n

    Article  CAS  PubMed  Google Scholar 

  14. Thakur TS, Dubey R, Desiraju GR (2015) Intermolecular atom-atom bonds in crystals—a chemical perspective. This essay and that by Lecomte et al. (2015) comment on Dunitz (2015). IUCrJ 2(2):159–160. https://doi.org/10.1107/S205225251500189X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gorb L, Leszczynski J (1999) Chapter 5 - Current trends in modeling interactions of DNA fragments with polar solvents. In: Leszczynski J (ed) Theoretical and Computational Chemistry, vol 8. Elsevier, pp 167–209. https://doi.org/10.1016/S1380-7323(99)80080-6

  16. Stefan G (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25(12):1463–1473. https://doi.org/10.1002/jcc.20078

    Article  CAS  Google Scholar 

  17. Kirchner MT, Blaser D, Boese R, Thakur TS, Desiraju GR (2011) Weak C-H...O hydrogen bonds in anisaldehyde, salicylaldehyde and cinnamaldehyde. Acta Crystallogr C 67(10):o387–o390. https://doi.org/10.1107/S0108270111035840

    Article  CAS  PubMed  Google Scholar 

  18. Holbrey JD, Seddon KR (1999) Ionic liquids. Clean Prod Process 1(4):223–236. https://doi.org/10.1007/s100980050036

    Article  Google Scholar 

  19. Earle MJ, Seddon KR (2002) Ionic liquids: green solvents for the future. In: Clean Solvents (ed) ACS Symposium Series, vol 819. American Chemical Society, pp 10-25. https://doi.org/10.1021/bk-2002-0819.ch002.

  20. Lei Z, Chen B, Koo Y-M, MacFarlane DR (2017) Introduction: ionic liquids. Chem Rev 117(10):6633–6635. https://doi.org/10.1021/acs.chemrev.7b00246

    Article  CAS  PubMed  Google Scholar 

  21. Kirchhecker S, Esposito D (2014) Amino acid-derived imidazolium zwitterions: building blocks for renewable ionic liquids and materials. In: Green Technologies for the Environment (ed). ACS Symposium Series, vol 1186. American Chemical Society, pp 53-68. https://doi.org/10.1021/bk-2014-1186.ch004

  22. Wu C, Wang J, Wang H, Pei Y, Li Z (2011) Effect of anionic structure on the phase formation and hydrophobicity of amino acid ionic liquids aqueous two-phase systems. J Chromatogr A 1218(48):8587–8593. https://doi.org/10.1016/j.chroma.2011.10.003

    Article  CAS  PubMed  Google Scholar 

  23. Gurkan BE, de la Fuente JC, Mindrup EM, Ficke LE, Goodrich BF, Price EA, Schneider WF, Brennecke JF (2010) Equimolar CO2 absorption by anion-functionalized ionic liquids. J Am Chem Soc 132(7):2116–2117. https://doi.org/10.1021/ja909305t

    Article  CAS  PubMed  Google Scholar 

  24. Mou Z, Li P, Bu Y, Wang W, Shi J, Song R (2008) Investigations of coupling characters in ionic liquids formed between the 1-ethyl-3-methylimidazolium cation and the glycine anion. J Phys Chem B 112(16):5088–5097. https://doi.org/10.1021/jp711358r

    Article  CAS  PubMed  Google Scholar 

  25. Mu X, Qi L, Zhang H, Shen Y, Qiao J, Ma H (2012) Ionic liquids with amino acids as cations: novel chiral ligands in chiral ligand-exchange capillary electrophoresis. Talanta 97:349–354. https://doi.org/10.1016/j.talanta.2012.04.044

    Article  CAS  PubMed  Google Scholar 

  26. Fukumoto K, Yoshizawa M, Ohno H (2005) Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc 127(8):2398–2399. https://doi.org/10.1021/ja043451i

    Article  CAS  PubMed  Google Scholar 

  27. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99(8):2071–2084. https://doi.org/10.1021/cr980032t

    Article  CAS  PubMed  Google Scholar 

  28. Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111(5):3508–3576. https://doi.org/10.1021/cr1003248

    Article  CAS  PubMed  Google Scholar 

  29. Yuvaraj SVJ, Zhdanov RK, Belosludov RV, Belosludov VR, Subbotin OS, Kanie K, Funaki K, Muramatsu A, Nakamura T, Kawazoe Y (2015) Solvation mechanism of task-specific ionic liquids in water: a combined investigation using classical molecular dynamics and density functional theory. J Phys Chem B 119(40):12894–12904. https://doi.org/10.1021/acs.jpcb.5b05945

    Article  CAS  PubMed  Google Scholar 

  30. Prabhu Charan KT, Pothanagandhi N, Vijayakrishna K, Sivaramakrishna A, Mecerreyes D, Sreedhar B (2014) Poly(ionic liquids) as “smart” stabilizers for metal nanoparticles. Eur Polym J 60:114–122. https://doi.org/10.1016/j.eurpolymj.2014.09.004

    Article  CAS  Google Scholar 

  31. Qian W, Texter J, Yan F (2017) Frontiers in poly(ionic liquid)s: syntheses and applications. Chem Soc Rev 46(4):1124–1159. https://doi.org/10.1039/c6cs00620e

    Article  CAS  PubMed  Google Scholar 

  32. Tao G-h, He L, W-s L, Xu L, Xiong W, Wang T, Kou Y (2006) Preparation, characterization and application of amino acid-based green ionic liquids. Green Chem 8(7):639–646. https://doi.org/10.1039/b600813e

    Article  CAS  Google Scholar 

  33. Li T, Yang Q, Ding H, Li J, Peng C, Liu H (2015) Amino acid based ionic liquids as additives for the separation of an acetonitrile and water azeotropic mixture: COSMO-RS prediction and experimental verification. Ind Eng Chem Res 54(48):12143–12149. https://doi.org/10.1021/acs.iecr.5b02828

    Article  CAS  Google Scholar 

  34. Rao SS, Bejoy NB, Gejji SP (2015) Hydrogen bonding, 1H NMR, and molecular electron density topographical characteristics of ionic liquids based on amino acid cations and their ester derivatives. J Phys Chem A 119(32):8752–8764. https://doi.org/10.1021/acs.jpca.5b04659

    Article  CAS  PubMed  Google Scholar 

  35. Liu X, Zhou G, Zhang S, Wu G (2010) Molecular simulation of imidazolium amino acid-based ionic liquids. Mol Simul 36(14):1123–1130. https://doi.org/10.1080/08927022.2010.497923

    Article  CAS  Google Scholar 

  36. Tietze AA, Bordusa F, Giernoth R, Imhof D, Lenzer T, Maaß A, Mrestani-Klaus C, Neundorf I, Oum K, Reith D, Stark A (2013) On the nature of interactions between ionic liquids and small amino-acid-based biomolecules. ChemPhysChem 14(18):4044–4064. https://doi.org/10.1002/cphc.201300736

    Article  CAS  PubMed  Google Scholar 

  37. Wu Y, Zhang T (2009) Structural and electronic properties of amino acid based ionic liquids: a theoretical study. J Phys Chem A 113(46):12995–13003. https://doi.org/10.1021/jp906465h

    Article  CAS  PubMed  Google Scholar 

  38. Li W, Wu X, Qi C, Rong H, Gong L (2010) Study on the relationship between the interaction energy and the melting point of amino acid cation based ionic liquids. J Mol Struct THEOCHEM 942(1):19–25. https://doi.org/10.1016/j.theochem.2009.11.027

    Article  CAS  Google Scholar 

  39. Gao H, Zhang Y, Wang H-J, Liu J, Chen J (2010) Theoretical study on the structure and cation−anion interaction of amino acid cation based amino acid ionic liquid [pro]+[NO3]−. J Phys Chem A 114(37):10243–10252. https://doi.org/10.1021/jp104775z

    Article  CAS  PubMed  Google Scholar 

  40. Rao SS, Gejji SP (2016) Electronic structure, NMR, spin–spin coupling, and noncovalent interactions in aromatic amino acid based ionic liquids. J Phys Chem A 120(28):5665–5684. https://doi.org/10.1021/acs.jpca.6b03985

    Article  CAS  PubMed  Google Scholar 

  41. Galiński M, Lewandowski A, Stępniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51(26):5567–5580. https://doi.org/10.1016/j.electacta.2006.03.016

    Article  CAS  Google Scholar 

  42. Khan NA, Hasan Z, Jhung SH (2014) Ionic liquids supported on metal-organic frameworks: remarkable adsorbents for adsorptive desulfurization. Chem Eur J 20(2):376–380. https://doi.org/10.1002/chem.201304291

    Article  CAS  PubMed  Google Scholar 

  43. Lei Z, Dai C, Zhu J, Chen B (2014) Extractive distillation with ionic liquids: a review. AICHE J 60(9):3312–3329. https://doi.org/10.1002/aic.14537

    Article  CAS  Google Scholar 

  44. Bara JE, Carlisle TK, Gabriel CJ, Camper D, Finotello A, Gin DL, Noble RD (2009) Guide to CO2 separations in imidazolium-based room-temperature ionic liquids. Ind Eng Chem Res 48(6):2739–2751. https://doi.org/10.1021/ie8016237

    Article  CAS  Google Scholar 

  45. Tawa GJ, Topol IA, Burt SK (1999) Chapter 9 - The calculation of relative binding thermodynamics of molecular associations in aqueous solvents. In: Leszczynski J (ed) Theoretical and Computational Chemistry, vol 8. Elsevier, pp 325–368. https://doi.org/10.1016/S1380-7323(99)80084-3

  46. Carda–Broch S, Berthod A, Armstrong DW (2003) Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid. Anal Bioanal Chem 375(2):191–199. https://doi.org/10.1007/s00216-002-1684-1

    Article  CAS  PubMed  Google Scholar 

  47. Xu W, Cooper EI, Angell CA (2003) Ionic liquids: ion mobilities, glass temperatures, and fragilities. J Phys Chem B 107(25):6170–6178. https://doi.org/10.1021/jp0275894

    Article  CAS  Google Scholar 

  48. Chaban VV, Fileti EE (2015) Mixtures of amino-acid based ionic liquids and water. J Mol Model 21(9):236. https://doi.org/10.1007/s00894-015-2783-1

    Article  CAS  PubMed  Google Scholar 

  49. Rao SS, Gejji SP (2015) Molecular insights accompanying aggregation in amino acid ionic liquids. Comput Theor Chem 1057(Supplement C):24–38. https://doi.org/10.1016/j.comptc.2015.01.012

    Article  CAS  Google Scholar 

  50. Roohi H, Khyrkhah S (2015) Quantum chemical studies on nanostructures of the hydrated methylimidazolium–based ionic liquids. J Mol Model 21(1):1. https://doi.org/10.1007/s00894-014-2561-5

    Article  CAS  PubMed  Google Scholar 

  51. Latif MAM, Micaêlo N, Abdul Rahman MB (2014) Solvation free energies in [bmim]-based ionic liquids: anion effect toward solvation of amino acid side chain analogues. Chem Phys Lett 615(Supplement C):69–74. https://doi.org/10.1016/j.cplett.2014.08.073

    Article  CAS  Google Scholar 

  52. Zhu X, Ai H (2016) Theoretical insights into the properties of amino acid ionic liquids in aqueous solution. J Mol Model 22(7):152. https://doi.org/10.1007/s00894-016-3009-x

    Article  CAS  PubMed  Google Scholar 

  53. Chiappe C, Capraro D, Conte V, Pieraccini D (2001) Stereoselective halogenations of alkenes and alkynes in ionic liquids. Org Lett 3(7):1061–1063. https://doi.org/10.1021/ol015631s

    Article  CAS  PubMed  Google Scholar 

  54. Scalmani G, Frisch MJ (2010) Continuous surface charge polarizable continuum models of solvation. I. general formalism. J Chem Phys 132(11):114110. https://doi.org/10.1063/1.3359469

    Article  CAS  PubMed  Google Scholar 

  55. Marenich AV, Cramer CJ, Truhlar DG (2013) Generalized born solvation model SM12. J Chem Theory Comput 9(1):609–620. https://doi.org/10.1021/ct300900e

    Article  CAS  PubMed  Google Scholar 

  56. Stefan G (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799. https://doi.org/10.1002/jcc.20495

    Article  CAS  Google Scholar 

  57. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  58. Te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22(9):931–967. https://doi.org/10.1002/jcc.1056

    Article  Google Scholar 

  59. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian. Gaussian, Inc., Wallingford, CT, USA, p 09

    Google Scholar 

  60. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91(5):893–928. https://doi.org/10.1021/cr00005a013

    Article  CAS  Google Scholar 

  61. Popelier PLA (1994) An analytical expression for interatomic surfaces in the theory of atoms in molecules. Theor Chim Acta 87(6):465–476. https://doi.org/10.1007/bf01127809

    Article  CAS  Google Scholar 

  62. Kagimoto J, Taguchi S, Fukumoto K, Ohno H (2010) Hydrophobic and low-density amino acid ionic liquids. J Mol Liq 153(2):133–138. https://doi.org/10.1016/j.molliq.2010.02.002

    Article  CAS  Google Scholar 

  63. Li ZW, Wu WS, Du ZY, Hao XY (2013) Structure and interaction between the [BMIM][ala] alanine anion and the 1-butyl-3-methylimidazolium cation in ion pairs. J Struct Chem 54(4):676–683. https://doi.org/10.1134/s0022476613040045

    Article  CAS  Google Scholar 

  64. Senthilkumar L, Ghanty TK, Ghosh SK, Kolandaivel P (2006) Hydrogen bonding in substituted formic acid dimers. J Phys Chem A 110(46):12623–12628. https://doi.org/10.1021/jp061285q

    Article  CAS  PubMed  Google Scholar 

  65. Umadevi V, Senthilkumar L, Kolandaivel P (2013) Theoretical investigations on the hydrogen bonding of nitrile isomers with H2O, HF, NH3 and H2S. Mol Simul 39(11):908–921. https://doi.org/10.1080/08927022.2013.777840

    Article  CAS  Google Scholar 

  66. Karthika M, Senthilkumar L, Kanakaraju R (2012) Theoretical studies on hydrogen bonding in caffeine–theophylline complexes. Comput Theor Chem 979:54–63. https://doi.org/10.1016/j.comptc.2011.10.015

    Article  CAS  Google Scholar 

  67. Weinhold F (2012) Natural bond orbital analysis: a critical overview of relationships to alternative bonding perspectives. J Comput Chem 33(30):2363–2379. https://doi.org/10.1002/jcc.23060

    Article  CAS  PubMed  Google Scholar 

  68. Senthilkumar L, Ghanty TK, Ghosh SK (2005) Electron density and energy decomposition analysis in hydrogen-bonded complexes of azabenzenes with water, acetamide, and thioacetamide. J Phys Chem A 109(33):7575–7582. https://doi.org/10.1021/jp052304j

    Article  CAS  PubMed  Google Scholar 

  69. Mohajeri A, Ashrafi A (2011) Structure and electronic properties of amino acid ionic liquids. J Phys Chem A 115(24):6589–6593. https://doi.org/10.1021/jp1093965

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors Dr. Senthilkumar Lakshmipathi and Mrs. Shyama Muraledharan gratefully acknowledge the DST-SERB, New Delhi, India, for granting the project and fellowship (EEQ/2016/000331).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senthilkumar Lakshmipathi.

Ethics declarations

Ethical statement

All the ethical guidelines have been adhered.

Conflict of interest

The authors declare that they have no conflict of interest

Electronic supplementary material

ESM 1

(DOCX 3115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shyama, M., Lakshmipathi, S. C–H···O interaction between cation and anion in amino acid-based ionic liquids—A DFT study in gas and solvent phase. Struct Chem 30, 185–194 (2019). https://doi.org/10.1007/s11224-018-1192-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1192-3

Keywords

Navigation