Skip to main content
Log in

Theoretical explorations about the excited state behaviors for two novel high efficient ESIPT compounds

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Two high efficient excited state intramolecular proton transfer (ESIPT) compounds (i.e., 3-(5-([1,1′-biphenyl]-4-yl)oxazol-2-yl)-4′-(N,N-diphenylamino)-[1,1′-biphenyl]-4-ol (1) and 4′-(N,N-diphenylamino)-3-(5-(4′-(diphenylamino)-[1,1′-biphenyl]-4-yl)oxazol-2-yl)-5-methyl-[1,1′-biphenyl]-4-ol (2)) are explored theoretically. Based on DFT and time-dependent DFT (TDDFT) methods, we investigate the hydrogen bonding interactions and ESIPT mechanism. Via B3LYP/TZVP/IEFPCM (toluene) theoretical level, we reappear the experimental steady-state spectra, which demonstrate that the theoretical manner is reasonable and effective. Based on reduced density gradient (RDG) versus sign(λ2)ρ analyses, we confirm intramolecular hydrogen bond for both 1-enol and 2-enol. Investigating geometrical parameters and infrared (IR) vibrational spectra, we verify the O-H···N should be strengthened in the S1 state for 1-enol and 2-enol systems. Exploring frontier molecular orbitals (MOs) and charge density difference (CDD) maps, we find charge redistribution provides the tendency of ESIPT. The constructed potential energy curves demonstrate that the proton transfer should happen in the S1 state. Particularly, the low potential energy barriers of forward and backward ESIPT process for both 1 and 2 systems, the dynamical equilibrium could be verified, which means 1 and 2 systems should be potential for novel white light LEDs materials. This work not only explores and explains previous experimental phenomenon, but also makes a reasonable assignment about the ESIPT mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nibbering E, Elsasser T (2004). Chem Rev 104:1887

    Article  CAS  Google Scholar 

  2. Alexander A, Zare R (2000). Acc Chem Res 33:199

    Article  CAS  Google Scholar 

  3. Wu Y, Han W, Wang D, Gao Y, Zhao Y (2008). Acc Chem Res 41:1418

    Article  CAS  Google Scholar 

  4. Olsen O, Smith C (2008). J Am Chem Soc 130:8677

    Article  CAS  Google Scholar 

  5. Raymo F, Bartberger M, Houk K, Stoddart J (2001). J Am Chem Soc 123:9264

    Article  CAS  Google Scholar 

  6. Banno M, Ohta K, Hirai S, Tominaga K (2009). Acc Chem Res 42:1259

    Article  CAS  Google Scholar 

  7. Zhao G, Han K (2012). Acc Chem Res 45:404

    Article  CAS  Google Scholar 

  8. Zhao G, Han K (2007). J Chem Phys 127:024306

    Article  Google Scholar 

  9. Zhao J, Li P (2015). Commun Comput Chem 3:66

    Google Scholar 

  10. Song P, Gao A, Zhou P, Chu T (2012). J Phys Chem A 116:5392

    Article  CAS  Google Scholar 

  11. Tang K, Chen C, Chuang H, Chen J, Chen Y, Lin Y, Shen J, Hu W, Chou P (2011). J Phys Chem Lett 2:3063

    Article  CAS  Google Scholar 

  12. Zhao J, Chen J, Liu J, Hoffmann M (2015). Phys Chem Chem Phys 17:11990

    Article  CAS  Google Scholar 

  13. Li G, Chu T (2011). Phys Chem Chem Phys 13:20766

    Article  CAS  Google Scholar 

  14. Li G, Han K (2018). WIREs Comput Mol Sci 8:e1351

    Article  Google Scholar 

  15. Chu T, Liu B (2016). Int Rev Phys Chem 35:187

    Article  CAS  Google Scholar 

  16. Zhao J, Song P, Ma F (2014). Commun Comput Chem 2:117

    Google Scholar 

  17. Zhao J, Chen J, Cui Y, Wang J, Xia L, Dai Y, Song P, Ma F (2015). Phys Chem Chem Phys 17:1142

    Article  CAS  Google Scholar 

  18. Cui Y, Zhao H, Zhao J, Li P, Song P, Xia L (2015). New J Chem 39:9910

    Article  CAS  Google Scholar 

  19. Yin H, Shi Y, Wang Y (2014). Spectrochim Acta A 129:280

    Article  CAS  Google Scholar 

  20. Liu Y, Wang S, Wang C, Zhu C, Han K, Lin S (2016). J Chem Phys 145:164314

    Article  Google Scholar 

  21. Tseng H, Liu J, Chen Y, Chao C, Liu K, Chen C, Lin T, Hung C, Chou Y, Lin T, Wang T, Chou P (2015). J Phys Chem Lett 6:1477

    Article  CAS  Google Scholar 

  22. Liu Y, Lan S, Zhu C, Lin S (2015). J Phys Chem A 119:6269

    Article  CAS  Google Scholar 

  23. Liu X, Yin H, Li H, Shi Y (2017). Spectrochim Acta A 177:1

    Article  CAS  Google Scholar 

  24. Zhang Z, Chen Y, Hung W, Tang W, Hsu Y, Chen C, Meng F, Chou P (2016). Chem Mater 28:8815

    Article  CAS  Google Scholar 

  25. Benelhadi K, Mazuzu W, Massue J, Retailleau P, Charaf-Eddin A, Laurent A, Jacquemin D, Ulrich G, Ziessel R (2014). Chem-Eur J 20:12843

    Article  Google Scholar 

  26. Tang K, Chang M, Lin T, Pan H, Fang T, Chen K, Hung W, Hsu Y, Chou P (2011). J Am Chem Soc 133:17738

    Article  CAS  Google Scholar 

  27. Li B, Lan J, Wu D, You J (2015). Angew Chem Int Ed 54:14008

    Article  CAS  Google Scholar 

  28. Li B, Zhou L, Cheng H, Huang Q, Lan J, Zhou L, You J (2018). Chem Sci 9:1213

    Article  CAS  Google Scholar 

  29. Zhou M, Zhao J, Cui Y, Wang Q, Dai Q, Song P, Xia L (2015). J Lumin 161:1

    Article  CAS  Google Scholar 

  30. Li H, Yin H, Liu X, Shi Y (2016). J At Mol Sci 7:115

    Google Scholar 

  31. Liu Y, Mehata M, Lan S (2014). Spectrochim Acta A 128:280

    Article  CAS  Google Scholar 

  32. Wei Q, Zhou Q, Zhao M, Zhang M, Song P (2017). J Lumin 183:7

    Article  CAS  Google Scholar 

  33. Cui Y, Li Y, Dai Y, Verpoort F, Song P, Xia L (2016). Spectrochim Acta A 154:130

    Article  CAS  Google Scholar 

  34. Zhao J, Yang Y (2016). Commun Comput Chem 4:1

    Article  CAS  Google Scholar 

  35. Lan S, Liu Y (2015). Spectrochim Acta A 139:49

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian, Inc., Wallingford

    Google Scholar 

  37. Lee C, Yang W, Parr R (1988). Phys Rev B 37:785

    Article  CAS  Google Scholar 

  38. Becke A (1993). J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  39. Miehlich B, Savin A, Stoll H, Preuss H (1989). Chem Phys Lett 157:200

    Article  CAS  Google Scholar 

  40. Feller D (1996). J Comput Chem 17:1571

    Article  CAS  Google Scholar 

  41. Cammi R, Tomasi J (1995). J Comput Chem 16:1449

    Article  CAS  Google Scholar 

  42. Cances E, Mennucci B, Tomasi J (1997). J Chem Phys 107:3032

    Article  CAS  Google Scholar 

  43. Johnson E, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen A, Yang W (2010). J Am Chem Soc 132:6498

    Article  CAS  Google Scholar 

  44. Zhao J, Song P, Ma F (2015). Commun Comput Chem 3:44

    Google Scholar 

  45. Zhao G, Han K (2008). Biophys J 94:38

    Article  CAS  Google Scholar 

  46. Zhao J, Yao H, Liu J, Hoffmann M (2015). J Phys Chem A 119:681

    Article  CAS  Google Scholar 

  47. Zhao G, Han K (2008). ChemPhysChem 9:1842

    Article  CAS  Google Scholar 

  48. Huang J, Wu J, Dong H, Song P, Zhao J (2017). Commun Comput Chem 5:27

    Google Scholar 

  49. Zhao G, Han K (2007). J Phys Chem A 111:9218

    Article  CAS  Google Scholar 

  50. Zhang M, Zhou Q, Du C, Ding Y, Song P (2016). RSC Adv 6:59389

    Article  CAS  Google Scholar 

  51. Song P, Ding J, Chu T (2012). Spectrochim Acta A 97:746

    Article  CAS  Google Scholar 

  52. Zhao J, Song P, Ma F (2015). Commun Comput Chem 2:146

    Google Scholar 

  53. Chu T, Xu J (2016). J Mol Model 22:200

    Article  Google Scholar 

  54. Liu L, Yang D, Li P (2014). J Phys Chem B 118:11707

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 11404112), the Key Scientific Research Project of Colleges and Universities of Henan Province of China (18A140023, 16B140002), and Science and Technology Research Project of Henan Province (172102210391).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dapeng Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yang, G., Zhang, Q. et al. Theoretical explorations about the excited state behaviors for two novel high efficient ESIPT compounds. Struct Chem 29, 1817–1823 (2018). https://doi.org/10.1007/s11224-018-1165-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1165-6

Keywords

Navigation