Skip to main content
Log in

Toxic CO detection by Li-encapsulated fullerene-like BeO

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

We report adsorption energies, structures, energy gap (E g), charge transfer, and electronic properties of carbon monoxide (CO) on primary, cation Li-, Li-, and two Li-encapsulated fullerene-like beryllium oxide (Be16O16, Li+@Be16O16, Li@Be16O16, and 2Li@Be16O16, respectively) for several adsorption states. The results have been interpreted by DFT calculations. The presented evidence shows that the CO molecule is not strongly adsorbed on the fullerene-like Be16O16 leading to energy release of − 0.17 to − 0.4 eV while its electronic properties did not show significant change. Li+@Be16O16, Li@Be16O16, and 2Li@Be16O16 can adsorb carbon monoxide more strongly than their pristine fullerene-like Be16O16. The energy gap (E g) of the Li@Be16O16 and 2Li@Be16O16 significantly decreased from 3.51 and 2.88 to 2.98 and 2.26 eV, upon the CO adsorption corresponding to the most stable configurations, respectively. It was also shown that the electrical conductance of the Li@Be16O16 and 2Li@Be16O16 may be increased after the CO adsorption. It was found that the electronic properties of Li@Be16O16 and 2Li@Be16O16 are sensitive to the presence of CO molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhuiykov S, Wlodarski W, Li Y (2001). Sensors Actuators B Chem 77:484–490

    Article  CAS  Google Scholar 

  2. Fukui K, Nakane M (1995). Sensors Actuators B Chem 25:486–490

    Article  CAS  Google Scholar 

  3. Beheshtian J, Bagheri Z, Kamfiroozi M, Ahmadi A (2012). Struct Chem 23:653–657

    Article  CAS  Google Scholar 

  4. Wanno B, Tabtimsai C (2014). Superlattice Microst 67:110–117

    Article  CAS  Google Scholar 

  5. Malavasi L, Tealdi C, Montenero A, Tulliani J, Moggi P, Guglielmi M, Flor G, Lorenzi A, Martucci A, Montanaro L (2006). Sensors Actuators B Chem 118:121–128

    Article  CAS  Google Scholar 

  6. Fernández E, Ordejón M, Balbás PLC (2005). Chem Phys Lett 408:252–257

    Article  Google Scholar 

  7. Bludský O, Silhan M, Nachtigall P, Bucko T, Benco L, Hafner J (2005). J Phys Chem B 109:9631–9638

    Article  Google Scholar 

  8. Mino L, Ferrari AM, Lacivita V, Spoto G, Bordiga S, Zecchina A (2011). J Phys Chem C 115:7694–7700

    Article  CAS  Google Scholar 

  9. Bechthold P, Pronsato ME, Pistonesi C (2015). Appl Surf Sci 347:291–298

    Article  CAS  Google Scholar 

  10. Iijima S (1991). Nature 354:56–58

    Article  CAS  Google Scholar 

  11. Peyghan AA, Soleymanabadi, Bagheri HZ (2015). J Iran Chem Soc 12:1071–1076

    Article  CAS  Google Scholar 

  12. Ahmadaghaei N, Noei M (2014). J Iran Chem Soc 11:725–731

    Article  CAS  Google Scholar 

  13. Murugadoss G, Rajamannan B, Ramasamy V (2011). J Mol Struct 991:202–206

    Article  CAS  Google Scholar 

  14. Beheshtian J, Soleymanabadi H, Kamfiroozi M, Ahmadi A (2012). J Mol Model 18:2343–2348

    Article  CAS  Google Scholar 

  15. Beheshtian J, Soleymanabadi H, Peyghan AA, Bagheri Z (2013). Appl Surf Sci 268:436–441

    Article  CAS  Google Scholar 

  16. Yong Y et al. (2016). Phys Chem Chem Phys 18(31):21431–21441

    Article  CAS  Google Scholar 

  17. Yong Y, Lv S, Zhang R, Zhou Q, Su X, Li T, Cui H (2016). RSC Adv 6(92):89080–89088

    Article  CAS  Google Scholar 

  18. Yong Y, Lv S, Li X, Li T, Cui H (2015). EPL Europhys Lett 29;111(1):10006

    Article  Google Scholar 

  19. Zhao S, Tian X, Liu J, Ren Y, Ren Y, Wang J (2015). J Clust Sci 26(2):491–503

    Article  CAS  Google Scholar 

  20. Huang W, Bulusu S, Pal R, Zeng XC, Wang LS (2009). J Chem Phys 131:234305-1-6

    Google Scholar 

  21. Gao Y, Shao N, Bulusu S, Zeng X (2008). J Phys Chem C 112:8234–8238

    Article  CAS  Google Scholar 

  22. Hossain D, Hagelberg F, Pittman CU, Saebo S (2007). J Phys Chem C 111:13864–13871

    Article  CAS  Google Scholar 

  23. Joshi K, Jain R, Pandya R, Ahuja B, Sharma B (1999). J Chem Phys 111:163–167

    Article  CAS  Google Scholar 

  24. Ren L, Cheng L, Feng Y, Wang X (2012). J Chem Phys 137:014309-1-5

    Google Scholar 

  25. Wu W, Lu P, Zhang Z, Guo W (2011). ACS Appl Mater Interfaces 3:4787–4795

    Article  CAS  Google Scholar 

  26. Sahariah MB, Ghosh S (2010). J Appl Phys 107:083520-1-6

    Article  Google Scholar 

  27. Zahedifar M, Mehrabi M, Modares M, Harooni S (2012). J NanoStruct 1:199–203

    Google Scholar 

  28. Xiaofeng W, Richu W, Chaoqun P, Tingting L, Bing L (2011). J Mater Sci Technol 27:147–152

    Article  Google Scholar 

  29. Hwang DY, Mebe AM (2001). Chem Phys Lett 348:303–310

    Article  CAS  Google Scholar 

  30. Noei M, Shahabadi VZ, Razi SN (2013). Chin J Chem Phys 26:612–616

    Article  CAS  Google Scholar 

  31. Shinde R, Tayade M (2014). J Phys Chem C 118:17200–17204

    Article  CAS  Google Scholar 

  32. Samadizadeh M, Rastegar SF, Peyghan AA (2015). Struct Chem 26:809–814

    Article  CAS  Google Scholar 

  33. Rastegar SF, Peyghan AA, Soleymanabadi H (2015). Phys E 68:22–27

    Article  CAS  Google Scholar 

  34. Dahlke EER, Olson M, Leverentz HR, Truhlar DG (2008). J Phys Chem A 112:3976–3984

    Article  CAS  Google Scholar 

  35. Merrick JP, Moran D, Radom L (2007). J Phys Chem A 111:11683–11700

    Article  CAS  Google Scholar 

  36. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S (1993). J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  37. O'boyle NM, Tenderholt AL, Langner KM (2008). J Comput Chem 29:839–845

    Article  Google Scholar 

  38. Baima J, Erba A, Rérat M, Orlando R, Dovesi R (2013). J Phys Chem C 117:12864–12872

    Article  CAS  Google Scholar 

  39. Groh D, Pandey R, Sahariah MB, Amzallag E, Baraille I, Rerat M (2009). J Phys Chem Solids 70:789–795

    Article  CAS  Google Scholar 

  40. Li XJ (2009). J Mol Struct THEOCHEM 896:25–29

    Article  CAS  Google Scholar 

  41. MatsuoY OH, Maruyama M, Sato H, Tobita H, Ono Y, Omote K, Kawachi K, Kasama Y (2012). Org Lett 14:3784–3787

    Article  Google Scholar 

  42. Ueno H, Nakamura Y, Ikuma N, Kokubo K, Oshima T (2012). Nano Res 5:558–564

    Article  CAS  Google Scholar 

  43. Ueno H, Kokubo K, Kwon E, Nakamura Y, Ikuma N, Oshima T (2013). Nano 5:2317–2321

    CAS  Google Scholar 

Download references

Acknowledgments

Special thanks are due to Dr. Masoumeh Ghalkhani for useful discussions. This work was supported by Shahid Rajaee Teacher Training University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Beheshtian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beheshtian, J., Ravaei, I. Toxic CO detection by Li-encapsulated fullerene-like BeO. Struct Chem 29, 231–241 (2018). https://doi.org/10.1007/s11224-017-1022-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-1022-z

Keywords

Navigation