Skip to main content
Log in

A computational investigation into the redox chemistry of Mo- and W-tris(diselenolene) complexes

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Since the 1960s, dithiolene complexes have been intensely studied; however, the same cannot be said about diselenolene complexes. Thus, the chemistry associated with the reduction of several Mo- and W-tris(diselenolene) complexes was investigated. In particular, relative reduction potentials, changes in key geometrical properties, the contribution of the metal center to the redox active MO, and HOMO–LUMO energy gaps are investigated. It is noted that the results obtained for the tris(diselenolene) complexes are compared to analogous Mo- and W-tris(dithiolene) complexes to understand the effect of substituting the sulfur atoms with selenium atoms. The reduction potentials of the complexes are more dependent upon the choice of the ligand than the metal. Overall, it is found that the substitution of chalcogen atom for the tris complexes investigated herein has only a subtle effect on the calculated reduction potentials between analogous redox couples. Upon reduction of the neutral and mono-anionic complexes, it is found that changes in key bond lengths, fold angles (θ), and trigonal twist angles (ΦAvg) are very similar for the tris(diselenolene) complexes investigated. Such changes have been previously observed for several Mo- and W-tris(dithiolene) complexes. Comparing the HOMO–LUMO energy gaps of the tris(diselenolene) complexes to the tris(dithiolene) complexes, the former complexes have on average a 0.07-eV smaller energy gap and are thus expected to be slightly more reactive to reduction. Lastly, in the neutral complexes, the Mo and W atoms contribute at most 26% to the redox active MO; thus, in the case of the tris(diselenolene) complexes, it can be concluded that the redox active MO is predominantly ligand based. The contribution of the metal-based AO becomes less as the complexes are reduced. In summary, given the high interest of dithiolene complexes in the areas of alternative energy and material science, the results presented herein provide motivation to further investigate the chemistry of diselenolene complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Stiefel EI (2004) In: Karlin KD, Stiefel EI (eds) Dithiolene chemistry, vol 52 . John Wiley & Sons, Inc., Hoboken, New Jersey, pp. vii–vixch. Preface

    Google Scholar 

  2. Eisenberg R (1970) Prog Inorg Chem 12:295

    CAS  Google Scholar 

  3. Beswick CL, Schulman JM, Stiefel EI (2004) In: Karlin KD, Stiefel EI (eds) Dithiolene chemistry, vol 52. John Wiley & Sons, Inc., Hoboken, New Jersey, pp. 55–110

    Chapter  Google Scholar 

  4. Eisenberg R and Ibers JA (1966) Inorg. Chem

  5. Eisenberg R and Ibers JA (1965) J. Am. Chem. Soc. 87

  6. Smith AE, Schrauzer GN, Mayweg VP, Heinrich W (1965) J Am Chem Soc:87

  7. Pierpont CG, Eisenberg R (1971) J Chem Soc A. doi:10.1039/j19710002285, 2285-2289

    Google Scholar 

  8. Bushnell EAC, Boyd RJ (2015) J Phys Chem A 119:911–918

    Article  CAS  Google Scholar 

  9. Eisenberg R, Gray HB (2011) Inorg Chem 50:9741–9751

    Article  CAS  Google Scholar 

  10. Ørnsø KB, Jónsson EÖ, Jacobsen KW, Thygesen KS (2015) J Phys Chem C 119:12792–12800

    Article  Google Scholar 

  11. Bushnell EAC, Boyd RJ (2016) Int J Quantum Chem 116:369–376

    Article  CAS  Google Scholar 

  12. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachar K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J and Fox DJ, Gaussian, Inc., Wallingford CT (2010)

  13. Zhao Y, Truhlar DG (2008) Theor Chem Accounts 120:215–241

    Article  CAS  Google Scholar 

  14. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167

    Article  CAS  Google Scholar 

  15. Ehlers AW, Bohme M, Dapprich S, Gobbi A, Hollwarth A, Jonas V, Kohler KF, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208:111–114

    Article  CAS  Google Scholar 

  16. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  17. Roy LE, Hay PJ, Martin RL (2008) J Chem Theory Comput 4:1029–1031

    Article  CAS  Google Scholar 

  18. Curtiss LA, McGrath MP, Blaudeau JP, Davis NE, Binning RC, Radom L (1995) J Chem Phys 103:6104–6113

    Article  CAS  Google Scholar 

  19. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  20. McLean AD, Chandler GS (1980) J Chem Phys 72:5639

    Article  CAS  Google Scholar 

  21. Hu L, Chen H (2015) J Chem Theory Comput 11:4601–4614

    Article  CAS  Google Scholar 

  22. Llano J, Eriksson LA (2002) J Chem Phys 117:10193–10206

    Article  CAS  Google Scholar 

  23. Roy LE, Jakubikova E, Guthrie MG, Batista ER (2009) J Phys Chem A 113:6745–6750

    Article  CAS  Google Scholar 

  24. Gritzner G, Kuta J (1984) Pure Appl Chem 56:461–466

    Article  Google Scholar 

  25. Namazian M, Lin CY, Coote ML (2010) J Chem Theory Comput 6:2721–2725

    Article  CAS  Google Scholar 

  26. Pavlishchuk VV, Addison AW (2000) Inorg Chim Acta 298:97–102

    Article  CAS  Google Scholar 

  27. Wang K (2004) In: Karlin KD, Stiefel EI (eds) Dithiolene chemistry, vol 52. John Wiley & Sons, Inc., Hoboken, New Jersey, pp. 267–314

    Chapter  Google Scholar 

  28. Kirk ML, McNaughton RL, Helton ME (2004) In: Stiefel EI (ed) Progress in inorganic chemistry: synthesis, properties, and applications, vol 52. John Wiley & Sons Inc, New York, pp. 111–212

    Google Scholar 

  29. Stiefel EI and Brown GF (1972) Inorg. Chem. 11

  30. Cowie M, Bennett MJ (1976) Inorg Chem 15:1584–1589

    Article  CAS  Google Scholar 

  31. Ryde U, Schulzke C, Starke K (2009) J Biol Inorg Chem 14:1053–1064

    Article  CAS  Google Scholar 

  32. Aihara J (1999) J Phys Chem A 103:7487–7495

    Article  CAS  Google Scholar 

  33. Ray K, George SD, Solomon EI, Wieghardt K, Neese F (2007) Chem-Eur J 13:2783–2797

    Article  CAS  Google Scholar 

  34. Baerends TZEJ, Autschbach J, Bashford D, Bérces A, Bickelhaupt FM, Bo C, Boerrigter PM, Cavallo L, Chong DP, Deng L, Dickson RM, Ellis DE, van Faassen M, Fan L, Fischer TH, Fonseca Guerra C, Franchini M, Ghysels A, Giammona A, van Gisbergen SJA, Götz AW, Groeneveld JA, Gritsenko OV, Grüning M, Gusarov S, Harris FE, van den Hoek P, Jacob CR, Jacobsen H, Jensen L, Kaminski JW, van Kessel G, Kootstra F, Kovalenko A, Krykunov MV, van Lenthe E, McCormack DA, Michalak A, Mitoraj M, Morton SM, Neugebauer J, Nicu VP, Noodleman L, Osinga VP, Patchkovskii S, Pavanello M, Philipsen PHT, Post D, Pye CC, Ravenek W, Rodríguez JI, Ros P, Schipper PRT, Schreckenbach G, Seldenthuis JS, Seth M, Snijders JG, Solà M, Swart M, Swerhone D, te Velde G, Vernooijs P, Versluis L, Visscher L, Visser O, Wang F, Wesolowski TA, van Wezenbeek EM, Wiesenekker G, Wolff SK, Woo TK, Yakovlev AL, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, ADF2013 edn

  35. van Lenthe E, Ehlers A, Baerends EJ (1999) J Chem Phys 110:8943–8953

    Article  Google Scholar 

  36. van Lenthe E, Baerends EJ, Snijders JG (1993) J Chem Phys 99:4597–4610

    Article  Google Scholar 

  37. van Lenthe E, Baerends EJ, Snijders JG (1994) J Chem Phys 101:9783–9792

    Article  Google Scholar 

Download references

Acknowledgements

EACB thanks the Natural Sciences and Engineering Research Council of Canada (NSERC) for funding. In addition, RJB thanks the NSERC for funding. Computational facilities are provided by ACEnet, the regional high-performance computing consortium for universities in Atlantic Canada. ACEnet is funded by the Canada Foundation for Innovation (CFI); the Atlantic Canada Opportunities Agency (ACOA); and the provinces of Newfoundland and Labrador, Nova Scotia, and New Brunswick. We also thank SHARCNET and Compute Canada for the additional computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. C. Bushnell.

Electronic supplementary material

ESM 1

The values of r(M–X), r(C–X) and r(C–C) (X = S and Se; M = Mo and W) for each of the complexes investigated herein are provided in Tables S1 and S2. The calculated average values of the fold angle (θ) and twist angle (Φ) for the tris(dithiolene)/diselenolene complexes are provided in Tables S3 and S4. The HOMO–LUMO energy gaps for [M(L)3]z and [M(L’)3]z (z = 0, 1–, 2–; M = Mo and W) are provided in Table S5. (DOCX 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bushnell, E.A.C., Adams, M.R. & Boyd, R.J. A computational investigation into the redox chemistry of Mo- and W-tris(diselenolene) complexes. Struct Chem 28, 1173–1180 (2017). https://doi.org/10.1007/s11224-017-0926-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-0926-y

Keywords

Navigation