Skip to main content
Log in

The cooperativity between the σ-hole and π-hole interactions in the ClO···XONO2/XONO···NH3 (X = Cl, Br, I) complexes

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The second-order Møller–lesset perturbation theory (MP2) calculations have been performed to investigate the cooperativity between the σ-hole and π-hole interactions in the ClO···XONO2/XONO···NH3 (X = Cl, Br, I) complexes. The σ-holes and π-holes have been found on the outer surfaces of XONO2/XONO: the σ-hole is outside the halogen atoms approximately along the extension of X–O bond, and the π-hole is above and below the nitrogen atom and the terminal oxygen atom. Both the σ-hole and π-hole interaction energies are consistent with the most positive electrostatic potentials (V S, max) of the σ-holes and π-holes, indicating that electrostatic interactions play an important role in the σ-hole and π-hole interactions. From a two- to a three-body interaction, the interaction energies, binding distances, and infrared vibrational frequencies prove that there is negative cooperativity between the σ-hole and π-hole interactions. In the formation of the σ-hole and π-hole interactions, the electric fields of the negative sites ClO and NH3 cause the decrease of the electronic density of the σ-hole and π-hole regions of XONO2. Due to the negative effect between the σ-hole and π-hole interactions, the decreased regions of electronic density of the σ-hole and π-hole are somewhat contracted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Buckingham AD, Fowler PW, Hutson JM (1988) Theoretical studies of van der Waals molecules and intermolecular forces. Chem Rev 88(6):963–988

    Article  CAS  Google Scholar 

  2. Auffinger P, Hays FA, Westhof E, Ho PS (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci USA 101(48):16789–16794

    Article  CAS  Google Scholar 

  3. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the sigma-hole. In: Proceedings of modeling interactions in biomolecules II, Prague, September 5th–9th, 2005. J Mol Model 13 (2):291–296

  4. Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12(28):7748–7757

    Article  CAS  Google Scholar 

  5. Bundhun A, Ramasami P, Murray JS, Politzer P (2013) Trends in sigma-hole strengths and interactions of F3MX molecules (M = C, Si, Ge and X = F, Cl, Br, I). J Mol Model 19(7):2739–2746

    Article  CAS  Google Scholar 

  6. Parisini E, Metrangolo P, Pilati T, Resnati G, Terraneo G (2011) Halogen bonding in halocarbon-protein complexes: a structural survey. Chem Soc Rev 40(5):2267–2278

    Article  CAS  Google Scholar 

  7. Politzer P, Murray JS (2013) Halogen bonding: an interim discussion. Chem Phys Chem 14(2):278–294

    CAS  Google Scholar 

  8. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) Sigma-holes, pi-holes and electrostatically-driven interactions. J Mol Model 18(2):541–548

    Article  CAS  Google Scholar 

  9. Bauza A, Ramis R, Frontera A (2014) A combined theoretical and cambridge structural database study of pi-hole pnicogen bonding complexes between electron rich molecules and both nitro compounds and inorganic bromides (YO2Br, Y = N, P, and As). J Phys Chem A 118(15):2827–2834

    Article  CAS  Google Scholar 

  10. Yan XQ, Zhao XR, Wang H, Jin WJ (2014) The competition of sigma-hole ···Cl(−) and pi-hole ···Cl(−) bonds between C6F5X (X = F, Cl, Br, I) and the chloride anion and its potential application in separation science. J Phys Chem B 118(4):1080–1087

    Article  CAS  Google Scholar 

  11. Alkorta I, Blanco F, Deyà PM, Elguero J, Estarellas C, Frontera A, Quiñonero D (2009) Cooperativity in multiple unusual weak bonds. Theor Chem Acc 126(1–2):1–14

    Google Scholar 

  12. Del Bene JE, Alkorta I, Elguero J (2011) Ab initio study of ternary complexes X:(HCNH)(+): Z with X, Z = NCH, CNH, FH, ClH, and FCl: diminutive cooperative effects on structures, binding energies, and spin–spin coupling constants across hydrogen bonds. J Phys Chem A 115(45):12677–12687

    Article  Google Scholar 

  13. Angelina EL, Peruchena NM (2011) Strength and nature of hydrogen bonding interactions in mono- and di-hydrated formamide complexes. J Phys Chem A 115(18):4701–4710

    Article  CAS  Google Scholar 

  14. Politzer P, Murray JS, Concha MC (2007) Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors. J Mol Model 13(6–7):643–650

    Article  CAS  Google Scholar 

  15. Alkorta I, Blanco F, Deyà PM, Elguero J, Estarellas C, Frontera A, Quiñonero D (2010) Cooperativity in multiple unusual weak bonds. Theor Chem Acc 126(1–2):1–14

    Article  CAS  Google Scholar 

  16. Solimannejad M, Ramezani V, Trujillo C, Alkorta I, Sanchez-Sanz G, Elguero J (2012) Competition and interplay between sigma–hole and pi–hole interactions: a computational study of 1:1 and 1:2 complexes of nitryl halides (O2NX) with ammonia. J Phys Chem A 116(21):5199–5206

    Article  CAS  Google Scholar 

  17. Molina MJ, Rowland FS (1974) Stratospheric sink for chlorofluoromethanes: chlorine atomcatalysed destruction of ozone. Nature 249(5460):810–812

    Article  CAS  Google Scholar 

  18. Wayne RP (1987) The photochemistry of ozone. Atmos Environ 21(8):1683–1694

    Article  CAS  Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2004) Gaussian 03. Gaussian Inc., Wallingford

    Google Scholar 

  20. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. J Chem Phys 119(21):11113

    Article  CAS  Google Scholar 

  21. Peterson KA (2003) Systematically convergent basis sets with relativistic pseudopotentials. I. Correlation consistent basis sets for the post-d group 13–15 elements. J Chem Phys 119(21):11099

  22. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90(2):1007

    Article  CAS  Google Scholar 

  23. Woon DE, Dunning TH (1995) Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon. J Chem Phys 103(11):4572

    Article  CAS  Google Scholar 

  24. Boys SF, Bernardi F (1970) Calculation of small molecular interactions by differences of separate total energies – some procedures with reduced errors. Mol Phys 19:553–566

  25. Hobza P, Havlas Z (2000) Blue-shifting hydrogen bonds. Chem Rev 100(11):4253–4264

    Article  CAS  Google Scholar 

  26. Murray JS, Politzer P (2011) The electrostatic potential: an overview. Comput Mol Sci 1:153–163

  27. Zeng Y, Zhang X, Li X, Meng L, Zheng S (2011) The role of molecular electrostatic potentials in the formation of a halogen bond in furan···XY and thiophene···XY complexes. ChemPhysChem 12:1080–1087

  28. Scrocco E, Tomasi J (1973) The electrostatic molecular potential as a tool for the interpretation of molecular properties. Springer, Berlin Heidelberg

    Google Scholar 

  29. Politzer P, Truhlar DG (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York

    Book  Google Scholar 

  30. Politzer P, Laurence PR, Jayasuriya K (1985) Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. Environ Health Perspect 61:191–202

    Article  CAS  Google Scholar 

  31. Naray-Szabo G, Ferenczy GG (1995) Molecular electrostatics. Chem Rev 95(4):829–847

    Article  CAS  Google Scholar 

  32. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16(11):1679–1691

    Article  CAS  Google Scholar 

  33. Politzer P, Riley KE, Bulat FA, Murray JS (2012) Perspectives on halogen bonding and other σ-hole interactions: Lex parsimoniae (Occam’s Razor). Comput Theor Chem 998:2–8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Contract Nos.: 21371045, 21373075, 21372062, 21102033, 21171047), and the Education Department Foundation of Hebei Province (Contract Nos.: ZH2012106, ZD20131053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanli Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, T., Li, X., Meng, L. et al. The cooperativity between the σ-hole and π-hole interactions in the ClO···XONO2/XONO···NH3 (X = Cl, Br, I) complexes. Struct Chem 26, 213–221 (2015). https://doi.org/10.1007/s11224-014-0486-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0486-3

Keywords

Navigation