Skip to main content
Log in

Cation···π interactions: QTAIM and NBO studies on the interaction of alkali metal cations with heteroaromatic rings

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The cation···π interactions of alkali metal cations (Li+, Na+, and K+) with five-membered heteroaromatic rings [furan(C4H4O), thiophene(C4H4S), pyrrole(C4H5N)] were examined by high level ab initio calculations, to investigate the different roles of C4H4O, C4H4S, and C4H5N as the electron donor, the influential factors that affect these interactions, the nature of this kind of cation···π interaction, and to determine topological and energetical properties to characterize these interactions. The sulfur atom in C4H4S plays a certain role in the cation···π interactions except the C–C π bond, which is different from C4H4O and C4H5N. The size of cation and the character of heteroaromatic ring are two influential factors that affect the cation···π interactions. The studied cation···π interactions can be classified as “closed-shell” and noncovalent interactions. The electron density and its Laplacian at the bond critical points and ring critical points generated upon complexation are useful measurements for the strength of cation···π interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hong BH, Bea SC, Lee CW, Jeong S, Kim KS (2001) Science 294:348–351

    Article  CAS  Google Scholar 

  2. Gallivan JP, Dougherty DA (1999) Proc Natl Acad Sci 96:9459–9464

    Article  CAS  Google Scholar 

  3. Dougherty DA (2007) J Nutr 137:1504S

    CAS  Google Scholar 

  4. Lhotak P, Shinkai S (1997) J Phys Org Chem 10:273–285

    Article  CAS  Google Scholar 

  5. Mahadevi AS, Sastry GN (2013) Chem Rev 113:2100–2138

    Article  CAS  Google Scholar 

  6. Ishikita H, Knapp EW (2007) J Am Chem Soc 129:1210–1215

    Article  CAS  Google Scholar 

  7. Yamada S, Tokugawa Y, Nojiri Y, Takamori E (2012) Chem Commun (Camb) 48:1763–1765

    Article  CAS  Google Scholar 

  8. Carlier PR, Lam PCH, Wong DM (2002) J Org Chem 67:6256–6259

    Article  CAS  Google Scholar 

  9. Watt M, Hwang J, Cormier KW, Lewis P (2009) J Phys Chem A 113:6192–6196

    Article  CAS  Google Scholar 

  10. Ma JC, Dougherty DA (1997) Chem Rev 97:1303–1324

    Article  CAS  Google Scholar 

  11. Abraham SA, Jose D, Datta A (2012) ChemPhysChem 13:695–708

    Article  CAS  Google Scholar 

  12. Ikuta S (2000) J Mol Struct (THEOCHEM) 530:201–207

    Article  CAS  Google Scholar 

  13. Sunner J, Nishizawa K, Kebarle P (1981) J Phys Chem 85:1814–1820

    Article  CAS  Google Scholar 

  14. Gapeev A, Yang CN, Klippenstein SJ, Dunbar RC (2000) J Phys Chem A 104:3246–3256

    Article  CAS  Google Scholar 

  15. Mohajeri A, Karimi E (2006) J Mol Struct (THEOCHEM) 774:71–76

    Article  CAS  Google Scholar 

  16. Reddy AS, Sastry GN (2005) J Phys Chem A 109:8893–8903

    Article  CAS  Google Scholar 

  17. Armentrout PB, Rodgers MT (2000) J Phys Chem A 104:2238–2247

    Article  CAS  Google Scholar 

  18. Huang H, Rodgers MT (2002) J Phys Chem A 106:4277–4289

    Article  CAS  Google Scholar 

  19. Cubero E, Orozco M, Luque FJ (1999) J Phys Chem A 103:315–321

    Article  CAS  Google Scholar 

  20. Gal JF, Maria PC, Decouzon M, Mo O, Yanez M, Abboud JL (2003) J Am Chem Soc 125:10394–10401

    Article  CAS  Google Scholar 

  21. Garau C, Frontera A, Quiñonero D, Ballester P, Costa A, Deyà PM (2003) Chem Phys Lett 382:534–540

    Article  CAS  Google Scholar 

  22. Guell M, Poater J, Luis JM, Mo O, Yanez M, Sola M (2005) ChemPhysChem 6:2552–2561

    Article  CAS  Google Scholar 

  23. Shepodd TJ, Petti MA, Dougherty DA (1986) J Am Chem Soc 108:6085–6087

    Article  CAS  Google Scholar 

  24. Dougherty D, Stauffer D (1990) Science 250:1558–1560

    Article  CAS  Google Scholar 

  25. Kearney PC, Mizoue LS, Kumpf RA, Forman JE, McCurdy A, Dougherty DA (1993) J Am Chem Soc 115:9907–9919

    Article  CAS  Google Scholar 

  26. Forman JE, Barrans RE, Dougherty DA (1995) J Am Chem Soc 117:9213–9228

    Article  CAS  Google Scholar 

  27. Scharer K, Morgenthaler M, Paulini R, Obst-Sander U, Banner DW, Schlatter D, Benz J, Stihle M, Diederich F (2005) Angew Chem Int Ed Engl 44:4400–4404

    Article  Google Scholar 

  28. Salonen LM, Ellermann M, Diederich F (2011) Angew Chem Int Ed Engl 50:4808–4842

    Article  CAS  Google Scholar 

  29. Sharma B, Umadevi D, Sastry GN (2012) Phys Chem Chem Phys 14:13922–13932

    Article  CAS  Google Scholar 

  30. Vijay D, Sastry GN (2006) J Phys Chem A 110:10148–10154

    Article  CAS  Google Scholar 

  31. Quinonero D, Frontera A, Garau C, Ballester P, Costa A, Deya PM (2006) ChemPhysChem 7:2487–2491

    Article  CAS  Google Scholar 

  32. Vijay D, Zipse H, Sastry GN (2008) J Phys Chem B 112:8863–8867

    Article  CAS  Google Scholar 

  33. Li R, Li QZ, Cheng J, Liu Z, Li W (2011) Chem Phys Chem 12:2289–2295

    CAS  Google Scholar 

  34. Mandal TK, Samanta S, Chakraborty S, Datta A (2013) ChemPhysChem 14:1149–1154

    Article  CAS  Google Scholar 

  35. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  36. Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules. Wiley-VCH, New York

    Book  Google Scholar 

  37. Szalewicz K, Jeziorski B (1997) In: Scheiner S (ed) Molecular interactions-from van der Waals to strongly bound complexes. Wiley, New York, p 3

    Google Scholar 

  38. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB et al (2004) Gaussian 03. Revision D.01 ed. Gaussian, Inc., Wallingford

  40. Boys SB, Bernardi B (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  41. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  42. Keith TA (2012) AIMALL. version 13.02.26 ed. USA

  43. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO 5.0 Program. Theoritical Chemistry Institute, University of Wisconsin, Madison

  44. Zheng SJ, Cai XH, Meng LP (1995) QCPE Bull 15:25

  45. Murray JS, Politzer P (1998) J Mol Struct (THEOCHEM) 425:107–114

    Article  CAS  Google Scholar 

  46. Politzer P, Murray JS (1999) Trends Chem Phys 7:157–165

    CAS  Google Scholar 

  47. Politzer P, Murray JS (2001) Fluid Phase Equilib 185:129–137

    Article  CAS  Google Scholar 

  48. Hagelin H, Murray JS, Politzer P, Brinck T, Berthelot M (1995) Can J Chem 73:483–488

    Article  CAS  Google Scholar 

  49. Zeng YL, Li XY, Zhang XY, Zheng SJ, Meng LP (2011) J Mol Model 17:2907–2918

    Article  CAS  Google Scholar 

  50. Zeng YL, Zhang XY, Li XY, Meng LP, Zheng SJ (2011) ChemPhysChem 12:1080–1087

    Article  CAS  Google Scholar 

  51. Grabowski SJ, Sokalski WA, Leszczynski J (2006) J Phys Chem A 110:4772–4779

    Article  CAS  Google Scholar 

  52. Zeng YL, Zhang XY, Li XY, Zheng SJ, Meng LP (2011) Int J Quantum Chem 111:3725–3740

    CAS  Google Scholar 

  53. Zhang XY, Zeng YL, Li XY, Meng LP, Zheng SJ (2011) Struct Chem 22:567–576

    Article  CAS  Google Scholar 

  54. Garau C, Frontera A, Quinonero D, Ballester P, Costa A, Deya PM (2003) ChemPhysChem 4:1344–1348

    Article  CAS  Google Scholar 

  55. Kim D, Lee EC, Kim KS, Tarakeshwar P (2007) J Phys Chem A 111:7980–7986

    Article  CAS  Google Scholar 

  56. Espinosa E, Alkorta I, Elguero J, Molins E (2002) J Chem Phys 117:5529–5542

    Article  CAS  Google Scholar 

  57. Zeng YL, Zhu M, Li XY, Zheng SJ, Meng LP (2012) J Comput Chem 33:1321–1327

    Article  CAS  Google Scholar 

  58. Ebrahimi A, Roohi H, Habibi M, Hasannejad M (2006) Chem Phys 327:368–372

    Article  CAS  Google Scholar 

  59. Cao DL, Ren FD, Liu SN, Chen SS (2009) J Mol Struct (THEOCHEM) 913:221–227

    Article  CAS  Google Scholar 

  60. Li XY, Zeng YL, Zhang XY, Zheng SJ, Meng LP (2011) J Mol Model 17:757–767

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Contract No. 21371045, 21372062), the Natural Science Foundation of Hebei Province (Contract No. B2014205109), the Education Department Foundation of Hebei Province (Contract No. ZH2012106, ZD20131037), and General and Doctor Foundation of Hebei Normal University (Contract No. L2010Y04, L2011B09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueying Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zeng, Y., Li, X. et al. Cation···π interactions: QTAIM and NBO studies on the interaction of alkali metal cations with heteroaromatic rings. Struct Chem 25, 1553–1561 (2014). https://doi.org/10.1007/s11224-014-0433-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0433-3

Keywords

Navigation