Skip to main content
Log in

Molecular structure and bonding character of mono and divalent metal cations (Li+, Na+, K+, Be2+, Mg2+, and Ca2+) with substituted benzene derivatives: AIM, NBO, and NMR analyses

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Cation–π complexes between several cations (Li+, Na+, K+, Be2+, Mg2+, and Ca2+) and different π-systems such as para-substituted (F, Cl, OH, SH, CH3, and NH2) benzene derivatives have been investigated by UB3LYP method using 6-311++G** basis set in the gas phase and the water solution. The ions have shown cation–π interaction with the aromatic motifs. Vibrational frequencies and physical properties such as dipole moment, chemical potential, and chemical hardness of these compounds have been systematically explored. The natural bond orbital analysis and the Bader’s quantum theory of atoms in molecules are also used to elucidate the interaction characteristics of the investigated complexes. The aromaticity is measured using several well-established indices of aromaticity such as NICS, HOMA, PDI, FLU, and FLUπ. The MEP is given the visual representation of the chemically active sites and comparative reactivity of atoms. Furthermore, the effects of interactions on NMR data have been used to more investigation of the studied compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hunter CA, Sanders JKM (1990) The nature of π–π interactions. J Am Chem Soc 112:5525–5534

    Article  CAS  Google Scholar 

  2. Hashimoto S, Ikuta S (1999) A theoretical study on the conformations, energetics, and solvation effects on the cation–π interaction between monovalent ions Li+, Na+, and K+ and naphthalene molecules. J Mol Struct Theochem 468:85–94

    Article  CAS  Google Scholar 

  3. Ikuta S (2000) A theoretical study on the conformations and energetics on the cation–π interaction between monovalent ions (M+ = Li+, Na+, and K+) and anthracene and phenanthrene molecules. J Mol Struct Theochem 530:201–207

    Article  CAS  Google Scholar 

  4. Aschi M, Mazza F, Di Nola A (2002) Cation–π interactions between ammonium ion and aromatic rings: an energy decomposition study. J Mol Struct Theochem 587:177–188

    Article  CAS  Google Scholar 

  5. Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed 42:1210–1250

    Article  CAS  Google Scholar 

  6. Salonen LM, Ellerman M, Diederich F (2011) Aromatic rings in chemical and biological recognition: energetics and structures. Angew Chem Int Ed 50:4808–4842

    Article  CAS  Google Scholar 

  7. Schneider H-J (2009) Binding mechanisms in supramolecular catalysis. Angew Chem Int Ed 48:3924–3977

    Article  CAS  Google Scholar 

  8. Burley SK, Petsko GA (1985) Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 229:23–28

    Article  CAS  Google Scholar 

  9. Bhattacharyya R, Samanta U, Chakrabarti P (2002) Aromatic-aromatic interactions in and around alpha-helices. Protein Eng 15:91–100

    Article  CAS  Google Scholar 

  10. Janiak C (2000) A critical account on pi–pi stacking in metal complexes with aromatic nitrogen-containing ligands. J Chem Soc Dalton Trans 21:3885–3896

    Article  Google Scholar 

  11. Dougherty DA (1996) Cation–π interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science 271:163–168

    Article  CAS  Google Scholar 

  12. Steed JW, Atwood JL (2009) Supramolecular chemistry. Wiley-VCH, Weinheim

    Book  Google Scholar 

  13. Ma JC, Dougherty DA (1997) The cation−π interaction. Chem Rev 97(5):1303–1324

    Article  CAS  Google Scholar 

  14. Ansorg K, Tafipolsky M, Engels B (2013) Cation–π interactions: accurate intermolecular potential from symmetry-adapted perturbation theory. J Phys Chem B 117(35):10093–10102

    Article  CAS  Google Scholar 

  15. Dinadayalane TC, Afanasiev D, Leszczynski J (2008) Structures and energetics of the cation–π interactions of Li+, Na+, and K+ with cup-shaped molecules: effect of ring addition to benzene and cavity selectivity. J Phys Chem A 112:7916–7924

    Article  CAS  Google Scholar 

  16. Hassan A, Dinadayalane TC, Grabowski SJ, Leszczynski J (2013) Structural, energetic, spectroscopic and QTAIM analyses of cation–p interactions involving mono- and bi-cyclic ring fused benzene systems. Phys Chem Chem Phys 15:20839–20856

    Article  CAS  Google Scholar 

  17. Raju RK, Bloom JWG, An Y, Wheeler SE (2011) Substituent effects on non-covalent interactions with aromatic rings: insights from computational chemistry. Chem Phys Chem 12(17):3116–3130

    CAS  Google Scholar 

  18. Hunter CA (2002) In: Proceedings of the National Academy of Sciences 99(8):4873–4876

    Google Scholar 

  19. Wheeler SE, Houk KN (2009) Substituent effects in cation/π interactions and electrostatic potentials above the centers of substituted benzenes are due primarily to through-space effects of the substituents. J Am Chem Soc 131(9):3126–3127

    Article  CAS  Google Scholar 

  20. Vijay D, Sastry GN (2010) The cooperativity of cation–PI and PI–PI interactions. Chem Phys Lett 485:235–242

    Article  CAS  Google Scholar 

  21. Reddy AS, Vijay D, Sastry GM, Sastry GN (2006) From subtle to substantial: role of metal ions on π–π interactions. J Phys Chem B 110:2479–2481

    Article  CAS  Google Scholar 

  22. Reddy AS, Vijay D, Sastry GM, Sastry GN (2006) Reply to “comment on ‘from subtle to substantial: role of metal ions on π−π interactions’”. J Phys Chem B 110:10206–10207

    Article  CAS  Google Scholar 

  23. Dinadayalane TC, Hassan A, Leszczynski J (2010) The effect of ring annelation to benzene on cation–π interactions: DFT study. J Mol Struc 976:320–323

    Article  CAS  Google Scholar 

  24. Dinadayalane TC, Hassan A, Leszczynski J (2012) A theoretical study of cation–p interactions: Li+, Na+, K+, Be2+, Mg2+ and Ca2+ complexation with mono- and bi-cyclic ring-fused benzene derivatives. Theor Chem Acc 131:1131–1141

    Article  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann JRE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian 03, revision A.7. Gaussian, Inc, Pittsburgh

  26. Miertus S, Tomasi J (1982) Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem Phys 65:239–245

    Article  CAS  Google Scholar 

  27. Boys SB, Bernardi F (1970) Calculation of small molecular interactions by… with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  28. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University, New York

    Google Scholar 

  29. Biegler König F, Schönbohm J (2002) Update of the AIM2000- program for atoms in molecules. J Comput Chem 23:1489–1494

    Article  Google Scholar 

  30. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  31. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1992) NBO, Version 3.1, Gaussian, Inc., Pittsburgh

  32. Wendt M, Weinhold F (2001) NBOView 1.0; Theoretical Chemistry Institute, University of Wisconsin, Madison

  33. Pulay P, Hinton JF, Wolinski K (1993) In: Tossel JA (ed) Nuclear magnetic shieldings and molecular structure, vol 386. Kluwer, Dordrecht

    Google Scholar 

  34. Hehre WJ, Radom L, Schleyer PR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  35. Cyranski MK, Krygowski TM, Katritzky AL, Schleyer PvR (2002) To what extent can aromaticity be defined uniquely? J Org Chem 67:1333–1338

    Article  CAS  Google Scholar 

  36. Krygowski TM (1993) Crystallographic studies of inter- and intramolecular interactions reflected in aromatic character of pi-electron systems. J Chem Inf Comput Sci 33:70–78

    Article  CAS  Google Scholar 

  37. Poater J, Duran M, Sola M, Silvi B (2005) Theoretical evaluation of electron delocalization in aromatic molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological approaches. Chem Rev 105:3911–3947

    Article  CAS  Google Scholar 

  38. Matito E, Duran M, Sola` M (2005) The aromatic fluctuation index (FLU): a new aromaticity index based on electron delocalization. J Chem Phys 122:014109–014117

    Article  Google Scholar 

  39. Garura C, Frontera A, Quin˜onero D, Ballester P, Costa A, Deya` PM (2003) Chem Phys Chem 4(12):1344–1348

    Google Scholar 

  40. Shishkin OV, Omelchennko IV, Krasovska M, Zabatyuk R, Gorb L, Leszczynski J (2006) J Mol Struct 791:158–164

    Article  CAS  Google Scholar 

  41. Seal P, Chakrabarti S (2007) Is nucleus-independent chemical shift scan a reliable aromaticity index for planar heteroatomic ring systems? J Phys Chem 111:9988–9994

    Article  CAS  Google Scholar 

  42. Ramsden CA (2010) The influence of aza-substitution on azole aromaticity. Tetrahedron 66:2695–2699

    Article  CAS  Google Scholar 

  43. Onsager L (1936) Electric moments of molecules in liquids. J Am Chem Soc 58:1486–1493

    Article  CAS  Google Scholar 

  44. Garau C, Frontera A, Quin˜onero D, Ballester P, Costa A, Deya` PM (2004) Cation−π versus anion−π interactions: energetic, charge transfer, and aromatic aspects. J Phys Chem A 108:9423–9427

    Article  CAS  Google Scholar 

  45. Doerksen RJ, Thakkar AJ (1999) Quadrupole and octopole moments of heteroaromatic rings. J Phys Chem A 103:10009–10014

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azadeh Khanmohammadi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 220 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khanmohammadi, A., Raissi, H., Mollania, F. et al. Molecular structure and bonding character of mono and divalent metal cations (Li+, Na+, K+, Be2+, Mg2+, and Ca2+) with substituted benzene derivatives: AIM, NBO, and NMR analyses. Struct Chem 25, 1327–1342 (2014). https://doi.org/10.1007/s11224-014-0405-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0405-7

Keywords

Navigation