Skip to main content

Advertisement

Log in

Energetic study of bromobenzonitrile isomers: insights on the intermolecular interactions, aromaticity and electronegativity

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The standard (p o = 0.1 MPa) molar enthalpies of formation, in the gaseous phase, of 2-, 3- and 4-bromobenzonitrile isomers were calculated from the combination of the following two parameters experimentally determined: the standard molar enthalpy of formation in the condensed phase, derived from the standard molar energy of combustion in oxygen at T = 298.15 K, measured by rotating-bomb combustion calorimetry, and the standard molar enthalpy of sublimation at the same reference temperature, derived from vapour pressure studies at several temperatures, as measured by mass-loss Knudsen effusion. The computational calculations complement the energetic study and analysis of the electron delocalization allows a comparison between the fluorine and bromine benzonitrile isomers. The harmonic oscillator model of aromaticity and nucleus-independent chemical shift aromaticity criteria and the natural bond orbital analysis were applied and related with the intramolecular enthalpic interactions. The intermolecular interactions in the crystal packing were analysed in terms of enthalpic and entropic contributions, using the crystallographic structures available in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Similar content being viewed by others

References

  1. Galvan-Gonzalez A, Stegeman GI, Jen AK, Wu X, Canva M, Kowalczyk AC, Zhang XQ, Lackritz HS, Marder S, Thayumanavan S, Levina G (2001) J Opt Soc Am B 18:1846–1853

    Article  CAS  Google Scholar 

  2. Zerza G, Röthler B, Sariciftci NS, Gómez R, Segura JL, Martín N (2001) J Phys Chem B 105:4099–4104

    Article  CAS  Google Scholar 

  3. Hou T, Li Y, He Y, Chen H, Xu X (2000) Chin Chem Lett 11:693–696

    CAS  Google Scholar 

  4. Zhao C, Feng P, Chen X, Ng MK (2011) Macromol Chem Phys 212:1515–1523

    Article  CAS  Google Scholar 

  5. Tieke B, Rabindranath A, Zhang K, Zhu Y (2010) Beilstein J Org Chem 6:830–845

    Article  Google Scholar 

  6. Kanimozhi C, Balraju P, Sharma GDS, Patil GD (2010) J Phys Chem B 114:3095–3103

    Article  CAS  Google Scholar 

  7. Qiao Z, Cao D, Liu Q, Weng J, He Z, Han SH (2009) J Peng Sci China Ser B 52:2038–2042

    Article  CAS  Google Scholar 

  8. Zhang G, Liu K, Li Y, Yang M (2009) Polym Int 58:665–673

    Article  CAS  Google Scholar 

  9. Sun C, Hudson ZM, Helander MG, Lu Z, Wang S (2011) Organometallics 30:5552–5555

    Article  CAS  Google Scholar 

  10. Zhong H, Lai H, Fang Q (2011) J Phys Chem C 115:2423–2427

    Article  CAS  Google Scholar 

  11. Idzik KR, Rapta P, Cywinski PJ, Beckert R, Dunsch L (2010) Electrochim Acta 55:4858–4864

    Article  CAS  Google Scholar 

  12. Luke V, Rapta P, Idzik KR, Beckert R, Dunsch L (2011) J Phys Chem B 115:3344–3353

    Article  Google Scholar 

  13. Porzio W, Destri S, Pasini M, Rapallo A, Giovanella U (2006) Cryst Growth Des 6:1497–1503

    Article  CAS  Google Scholar 

  14. Dixon S, Whitby RJ (2006) Tetrahedron Lett 47:8147–8150

    Article  CAS  Google Scholar 

  15. Battagliarin G, Li C, Enkelmann V, Müllen K (2011) Org Lett 13:3012–3015

    Article  CAS  Google Scholar 

  16. Kohler B, Langer M, Mosandl T (2000) Great Lakes Chemical Konstanz GmbH, Constance, DE, US patent 6,121,480

  17. Ribeiro da Silva MAV, Monte MJS, Rocha IM, Cimas A (2012) J Org Chem 77:4312–4322

    Article  CAS  Google Scholar 

  18. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  19. Grimme S (2003) J Chem Phys 118:9095–9102

    Article  CAS  Google Scholar 

  20. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  21. Krygowski TM (1993) J Chem Inf Comput Sci 33:70–78

    Article  CAS  Google Scholar 

  22. Krygowski TM, Cyranski M (1996) Tetrahedron 52:1713–1722

    Article  CAS  Google Scholar 

  23. Corminboeuf C, Heine T, Seifert G, Schleyer PvR, Weber J (2004) Phys Chem Chem Phys 6:273–276

    Article  CAS  Google Scholar 

  24. Fallah-Bagher-Shaidaei H, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2006) Org Lett 8:863–866

    Article  CAS  Google Scholar 

  25. Schleyer PvP, Maerker C, Dransfeld A, Jiao H, Hommes NJR (1996) J Am Chem Soc 118:6317–6318

    Article  CAS  Google Scholar 

  26. Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvP (2005) Chem Rev 105:3842–3888

    Article  CAS  Google Scholar 

  27. Lima CFRAC, Gomes LR, Santos LMNBF (2007) J Phys Chem A 111:10598–10603

    Article  CAS  Google Scholar 

  28. Ribeiro da Silva MAV, Galvão TLP, Rocha IM, Santos AFLOM (2012) J Chem Thermodym 54:330–338

    Article  CAS  Google Scholar 

  29. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–929

    Article  CAS  Google Scholar 

  30. Weinhold F, Landis CR (2001) Chem Ed: Res Pract 2:91–104

    Article  CAS  Google Scholar 

  31. Certificate of Analysis (1995) Standard Reference Material 39j, Benzoic Acid Calorimetric Standard. NIST, Gaithersburg

    Google Scholar 

  32. Wieser ME, Berglund M (2011) Pure Appl Chem 83:359–396

    Article  CAS  Google Scholar 

  33. Cox JD, Gundry HA, Head A (1964) Trans Faraday Soc 60:653–665

    Article  CAS  Google Scholar 

  34. Gundry HA, Head A (1978) J Chem Thermodyn 10:195–200

    Article  CAS  Google Scholar 

  35. Ribeiro da Silva MDMC, Souza P, Pilcher G (1989) J Chem Thermodyn 21:173–178

    Article  CAS  Google Scholar 

  36. Ribeiro da Silva MAV, Gonçalves JM, Pilcher G (1997) J Chem Thermodyn 29:253–260

    Article  CAS  Google Scholar 

  37. Santos LMNBF, Silva MT, Schröder B, Gomes LJ (2007) Therm Anal Calorim 89:175–180

    Article  CAS  Google Scholar 

  38. Coops J, Jessup RS, Van Nes K (1956) In: Rossini FD (ed) Experimental Thermochemistry, vol 1. Interscience, New York

    Google Scholar 

  39. Good WD, Scott DW, Waddington G (1956) J Phys Chem 60:1080–1089

    Article  CAS  Google Scholar 

  40. Skinner HA, Snelson A (1960) Trans Faraday Soc 56:1776–1783

    Article  CAS  Google Scholar 

  41. Hu AT, Sinke GC, Månsson M, Ringnér B (1972) J Chem Thermodyn 4:283–299

    Article  CAS  Google Scholar 

  42. Bjellerup L (1957) Acta Chem Scand 11:1761–1765

    Article  CAS  Google Scholar 

  43. Sellers P, Sunner S, Wadsö I (1964) Acta Chem Scand 18:202–206

    Article  CAS  Google Scholar 

  44. Vogel AI (1978) Quantitative Inorganic Analysis. Longmans, London

    Google Scholar 

  45. The NBS Tables of Chemical Thermodynamic Properties (1982) J Phys Chem Ref Data 11(Suppl 2)

  46. Bjellerup L (1962) In: Skinner HA (ed) Experimental Thermochemistry, vol 2. Interscience, New York

    Google Scholar 

  47. Washburn EW (1933) J Res Natl Bur Stand (US) 10:525–558

    Article  CAS  Google Scholar 

  48. Britton D (2007) Acta Cryst C63:o14–o16

    Google Scholar 

  49. Alfa Aesar, On-line catalogue, Portugal http://www.alfa.com. Accessed 24 Oct 2011

  50. Desiraju GR, Harlow RL (1989) J Am Chem Soc 111:6757–6764

    Article  CAS  Google Scholar 

  51. Ribeiro da Silva MAV, Monte MJS (1990) Thermochim Acta 171:169–183

    Article  CAS  Google Scholar 

  52. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JAJ, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (2004) Gaussian 03, revision C.01. Gaussian, Inc, Wallingford

  53. Cox JD, Wagman DD, Medvedev VA (1989) CODATA Key Values for Thermodynamics. Hemisphere, New York

    Google Scholar 

  54. Domalski ES, Hearing ED (1993) J Phys Chem Ref Data 22:805–1159

    Article  CAS  Google Scholar 

  55. Benson SW, Buss JH (1958) J Chem Phys 29:546–572

    Article  CAS  Google Scholar 

  56. Ribeiro da Silva MAV, Lobo Ferreira AIMC, Santos AFLOM, Rocha IM (2010) J Chem Thermodyn 42:169–176

    Article  CAS  Google Scholar 

  57. Merz K (2006) Cryst Growth Des 6:1615–1619

    Article  CAS  Google Scholar 

  58. Ribeiro da Silva MAV, Ferreira AIMCL, Gomes JRB (2006) Bull Chem Soc Jpn 79:1852–1859

    Article  CAS  Google Scholar 

  59. Ribeiro da Silva MAV, Ferreira AIMCL, Gomes JRB (2006) Chem Phys Lett 422:565–570

    Article  CAS  Google Scholar 

  60. Santos AFLOM, Ribeiro da Silva MAV (2011) J Phys Chem B 115:4939–4948

    Article  CAS  Google Scholar 

  61. Dannenfelser RM, Yalkowsky SH (1996) Ind Eng Chem Res 35:1483–1486

    Article  CAS  Google Scholar 

  62. Abramowitz R, Yalkowsky SH (1990) Pharm Res 7:942–947

    Article  CAS  Google Scholar 

  63. Gilbert AS (2007) Thermochim Acta 452:135–139

    Article  CAS  Google Scholar 

  64. Jain A, Yang G, Yalkowsky SH (2004) Ind Eng Chem Res 43:4376–4379

    Article  CAS  Google Scholar 

  65. Wei J (1999) Ind Eng Chem Res 38:5019–5027

    Article  CAS  Google Scholar 

  66. Lima CFRAC, Rocha MAA, Melo A, Gomes LR, Low JN, Santos LMNBF (2010) J Phys Chem A 115:11876–11888

    Article  Google Scholar 

  67. Lima CFRAC, Rocha MAA, Schröder B, Gomes LR, Low JN, Santos LMNBF (2012) J Phys Chem B 116:3557–3570

    Article  CAS  Google Scholar 

  68. Lima CFRAC, Costa JCS, Santos LMNBF (2011) J Phys Chem A 115:9249–9258

    Article  CAS  Google Scholar 

  69. Mayer JE, Brunauer S, Mayer MG (1983) J Am Chem Soc 55:37–53

    Article  Google Scholar 

  70. McQuarrie DA, Simon JD (1997) Physical Chemistry: A Molecular Approach. University Science Books, Sausalito

    Google Scholar 

  71. Britton D, Konnert J, Lam S (1977) Cryst Str Commun 6:45. Cited in Ref. [50]

  72. Fleck S, Weiss A (1987) Naturforsch 42a:645 Cited in Ref. [50]

  73. Vasylyeva V, Merz K (2010) Cryst Growth Des 10:4250–4255

    Article  CAS  Google Scholar 

  74. Pauling L (1932) J Am Chem Soc 54:3570–3582

    Article  CAS  Google Scholar 

  75. Allred AL (1961) J Inorg Nucl Chem 17:215–221

    Article  CAS  Google Scholar 

  76. Mullay J (1985) J Am Chem Soc 107:7271–7275

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to Fundação para a Ciência e Tecnologia (FCT), Lisbon, Portugal and to European Social Fund for financial support to Centro de Investigação em Química, University of Porto (strategic project PEst-C/QUI/UI0081/2011). I.M.R and T.L.P.G. thank FCT and European Social Fund (ESF) under the Community Support Framework (CSF) for the award of Ph.D. fellowship (SFRH/BD/61915/2009) and (SFRH/BD/62231/2009), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria D. M. C. Ribeiro da Silva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11224_2013_278_MOESM1_ESM.doc

This supplementary information includes all the rotating-bomb combustion calorimetry experiments for 2-, 3- and 4-bromobenzonitrile isomers as well as the areas of the orifices of the cells used and the vapour pressure obtained by mass-loss Knudsen effusion method for each studied compound. Cartesian coordinates of the optimized structures for the three bromobenzonitrile isomers and all the auxiliaries molecules at MP2/cc-pVTZ level of theory, as well as the computed enthalpies for the compounds studied are also listed. Some explanations of Donor–acceptor propagation method calculations and the second-order perturbation energies interactions for each compound are presented. (DOC 538 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rocha, I.M., Galvão, T.L.P., Ribeiro da Silva, M.D.M.C. et al. Energetic study of bromobenzonitrile isomers: insights on the intermolecular interactions, aromaticity and electronegativity. Struct Chem 24, 1935–1944 (2013). https://doi.org/10.1007/s11224-013-0278-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0278-1

Keywords

Navigation