Skip to main content
Log in

Control of ionic properties of N-nitrosodimethylamine through hydrogen substitution by fluorine atoms

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this paper the effect of hydrogen substitution by fluorine on the dipole moment and static isotropic polarizabilities of N-nitrosodimethylamine has been studied through ab initio (MP2) and DFT (B3LYP) calculations with the cc-pVTZ basis set. It has been found that most of the 40 different substitution patterns lead to a decrease of dipole moment upon fluorine substitution, and in some cases the decrease is quite substantial (for instance, from about 4.3 to 0.4 D at MP2 level). Three types of substitution cause an increase in the dipole moment, but of at most ~0.5 and 0.8 D at the B3LYP and MP2 levels, respectively. The changes in the dipole moment are largely dependent on the number and location of the fluorine atoms, but some positions are more important than others, especially as up to three fluorine atoms are used. On the other hand, the changes in the polarizabilities are of minor importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Loeppky RN, Michejda CJ (eds) (1994) Nitrosamines and related N-nitroso compounds: chemistry and biochemistry. ACS Symposium Series 553; American Chemical Society, Washington, D C

  2. Lijinsky W (1992) Chemistry and biology of N-nitroso compounds. Cambridge University Press, Cambridge

    Google Scholar 

  3. Preussmann R, Stewart BW, Searle CE (eds) (1984) Chemical carcinogens, vol 2, 2nd edn. ACS Monography 182, Washington, DC

  4. Leoppky RN, Outram JR (1982) In nitroso compounds: occurrence and biological effects. IARC, Lyon

    Google Scholar 

  5. IARC (1978) Some N-nitroso compounds, IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans, vol 17. IARC, Lyon

    Google Scholar 

  6. Daniel P, Arenas JF, Otero JC, Soto J (2007) J Org Chem 72:4741

    Article  Google Scholar 

  7. Wanno B, Ruangpornvisuti V (2006) J Mol Struct (THEOCHEM) 766:159

    Article  CAS  Google Scholar 

  8. Xu N, Goodrich LE, Lehnert N, Powell DR, Richter-Addo GB (2010) Inorg Chem 49:4405

    Article  CAS  Google Scholar 

  9. Geun B, Yi Khan MA, Richter-Addo GB (1995) J Am Chem Soc 117:7850

    Article  Google Scholar 

  10. Chen Li Yi, Geun-Bae WL-S, Dharmawardana UR, Dart AC, Khan MA, Richter-Addo GB (1998) Inorg Chem 37:4677

    Article  Google Scholar 

  11. Lee J, Chen Li, West AH, Richter-Addo GB (2002) Chem Rev 102:1019

    Article  CAS  Google Scholar 

  12. do Monte SA, Ventura E, da Costa TF, de Santana SR (2011) Struct Chem 22:509

    Article  Google Scholar 

  13. do Monte SA, Ventura E, de Andrade RB (2012) J Mol Mod 18:339

    Google Scholar 

  14. Rodgers MT, Armentrout PB (2000) Mass Spectrom Rev 19:215

    Article  CAS  Google Scholar 

  15. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  16. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  17. Møller C, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  18. Bartlett RJ, Silver DM (1975) J Chem Phys 62:3258

    Article  CAS  Google Scholar 

  19. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JAJr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA, Gaussian 03 (2004) Revision E01; Gaussian, Inc, Wallingford, CT

  21. Scappini F, Guarnieri A, Dreizler H, Rademacher P (1972) Z Naturforsch 27a:1329

  22. Atkins PW (1992) Physical chemistry, 4th edn. Oxford University Press, Oxford, p 655

  23. Huheey JE (1993) Inorganic chemistry, 4th edn. Harper Collins, New York, p 299

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the CNPq (476201/2009-8, 303856/2008-4, 303860/2008-1, 570565/2008-1) and CAPES (Brazilian agencies) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silmar A. do Monte.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

do Monte, S.A., Ventura, E., de Andrade, R.B. et al. Control of ionic properties of N-nitrosodimethylamine through hydrogen substitution by fluorine atoms. Struct Chem 23, 1193–1201 (2012). https://doi.org/10.1007/s11224-012-9945-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-9945-x

Keywords

Navigation