Skip to main content
Log in

Synthesis, characterizations, and optical properties of copper selenide quantum dots

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

We demonstrate the synthesis of copper selenide quantum dots (QDs) by element directed, inexpensive, straight forward wet chemical method which is free from any surfactant or template. Copper selenide QDs have been synthesized by elemental copper and selenium in the presence of ethylene glycol, hydrazine hydrate, and a defined amount of water at 70 °C within 8 h. The product is in strong quantum confinement regime, phase analysis, purity and morphology of the product has been well studied by X-ray diffraction (XRD), UV–Visible spectroscopy (UV–Vis), Photo-luminescent spectroscopy (PL), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), High resolution transmission electron microscopy (HRTEM), and by Atomic force microscopy (AFM) techniques. The absorption and photoluminescence studies display large “blue shift”. TEM and HRTEM analyses revealed that the QDs diameters are in the range 2–5 nm. Due to the quantum confinement effect copper selenide QDs could be potential building blocks to construct functional devices and solar cell. The possible mechanism is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li YD, Wang JW, Deng ZX, Wu YY, Sun XM (2001) J Am Chem Soc 123:9904

    Article  CAS  Google Scholar 

  2. Li YD, Ding Y, Qian YT, Yang L (1998) Inorg Chem 37:2844

    Article  CAS  Google Scholar 

  3. Wang WZ, Geng Y, Yan P, Liu FY (1999) Inorg Chem Commun 2:83

    Article  CAS  Google Scholar 

  4. Li Y, Ding Y, Wang Z (1999) Adv Mater 11:847

    Article  CAS  Google Scholar 

  5. Kaito C, Nonaka A, Kimura S, Suzuki N, Saito Y (1998) J Cryst Growth 186:386

    Article  CAS  Google Scholar 

  6. Bawendi MG, Carroll PJ, Wilson WL, Brus LE (1992) J Chem Phys 96:946

    Article  CAS  Google Scholar 

  7. Zhang BP, Yasuda T, Segawa Y, Yaguchi H, Onabe K (1997) Appl Phys Lett 70:2413

    Article  CAS  Google Scholar 

  8. Wang W, Geng Y, Yan P, Liu F, Xie Y (1999) J Am Chem Soc 121:4062

    Article  CAS  Google Scholar 

  9. Chivers T (1996) Dalton Trans 1185

  10. Ritter JJ, Pichai M (1995) Inorg Chem 34:4278

    Article  CAS  Google Scholar 

  11. Mongellaz F, Fillot A (1994) Proc SPIE Int Soc Opt Eng 156:22

    Google Scholar 

  12. Lakshmikumar ST, Rastogi AC (1994) Sol Energy Mater Sol Cells 32:7

    Article  CAS  Google Scholar 

  13. Zhu JJ, Palchik O, Chen SG, Gedanken A (2000) J Phys Chem B 104:7344

    Article  CAS  Google Scholar 

  14. Xie Y, Zheng XW, Jiang XC, Lu J, Zhu LY (2002) Inorg Chem 41:387

    Article  CAS  Google Scholar 

  15. Xu S, Wang H, Zhu JJ, Chen HY (2002) J Cryst Growth 234:263

    Article  CAS  Google Scholar 

  16. Kemmler M, Lazell M, O’Brien P, Otway DJ, Park JH (2002) J Mater Sci Mater Electron 13:531

    Article  CAS  Google Scholar 

  17. Dhanam M, Manoj PK, Prabhu Rajeev R (2005) J Cryst Growth 280:425

    Article  CAS  Google Scholar 

  18. Zulkarnain Z, Saravanan N, Loo TC (2005) Mater Lett 59:1391

    Article  Google Scholar 

  19. Shafizade KB, Ivanova IV, Kaizinets MM (1978) Thin Solid Films 55:211

    Article  CAS  Google Scholar 

  20. Haram SK, Santhanam KSV, Numann-Spallar M, Levy-Clement C (1992) Mater Res Soc Bull 27:1185

    Article  CAS  Google Scholar 

  21. Gracia VM, Nair PK, Nair MTS (1999) J Cryst Growth 203:113

    Article  Google Scholar 

  22. Lakshmi M, Bindu K, Bini S, Vijayakumar KP, Sudha Kartha C (2000) Thin Solid Films 370:89

    Article  CAS  Google Scholar 

  23. Lakshmi M, Bindu K, Bini S, Vijayakumar KP, Sudha Kartha C (2001) Thin Solid Films 386:127

    Article  CAS  Google Scholar 

  24. Heyding RD, Murray RM (1976) Can J Chem 54:841

    Article  CAS  Google Scholar 

  25. Heyding RD (1966) Can J Chem 44:1233

    Article  Google Scholar 

  26. Schafer A, Kouwitz M, Ahlrichs R (1996) J Chem Phys 104:7113

    Article  Google Scholar 

  27. Zhang WX, Zhang XM, Zhang L, Wu JX, Hui ZH (2000) Inorg Chem 39:1838

    Article  CAS  Google Scholar 

  28. Wang WZ, Yan P, Liu FY, Xie Y, Geng Y (1998) J Mater Chem 8:2321

    Article  CAS  Google Scholar 

  29. Han ZH, Li YP, Zhao HQ, Yu SH, Yin XL (2000) Mater Lett 44:366

    Article  CAS  Google Scholar 

  30. Su HL, Xie Y, Qiao ZP, Qian YT (2000) Mater Res Bull 35:1129

    Article  CAS  Google Scholar 

  31. Hermann AM, Fabick L (1983) J Cryst Growth 61:658

    Article  CAS  Google Scholar 

  32. Vohl P, Perkins DM, Ellis SG, Addiss RR, Huis W (1967) IEEE Trans Electron Dev 14:26

    Article  CAS  Google Scholar 

  33. Okimura H, Matsumae T, Makabe R (1980) Thin Solid Films 71:53

    Article  CAS  Google Scholar 

  34. Tadashi S, Matsubara S, Minagawa S (1977) Jpn J Appl Phys 16:807

    Article  Google Scholar 

  35. Sharma KC, Sharma RP, Garg JC (1992) J Phys D Appl Phys 25:1019

    Article  CAS  Google Scholar 

  36. Padam GK (1987) Thin Solid Films 150:L89

    Article  CAS  Google Scholar 

  37. Abdullaev GB, Aliyarova ZA, Asadov GA (1996) Phys Status Solidi 21:461

    Article  Google Scholar 

  38. Sharma KC, Sharma RP, Garg JC (1990) Indian J Pure Appl Phys 28:590

    CAS  Google Scholar 

  39. Kumar P, Singh K (2009) Cryst Growth Des 9:3089

    Article  CAS  Google Scholar 

  40. Kumar P, Singh K, Srivastava ON (2010) J Cryst Growth 312:2804

    Article  CAS  Google Scholar 

  41. Kumar P, Singh K (2010) Curr Nanosci 6:89

    Article  CAS  Google Scholar 

  42. Kumar P, Singh K (2010) Curr Nanosci 6:402

    Article  CAS  Google Scholar 

  43. Peng Q, Dong YJ, Li YD (2003) Inorg Chem 42:2174

    Article  CAS  Google Scholar 

  44. Liang HW, Liu S, Wu QS, Yu SH (2009) Inorg Chem 48:4927

    Article  CAS  Google Scholar 

  45. Kumar P, Singh K (2009) J Opto Biomed Mater 1:59

    Google Scholar 

  46. Li FB, Li XZ (2002) Appl Catal A 228:15

    Article  CAS  Google Scholar 

  47. Yu JG, Su YR, Cheng B (2007) Adv Funct Mater 17:1984

    Article  CAS  Google Scholar 

  48. Yu JG, Li C, Liu SG (2008) J Colloid Interface Sci 326:433

    Article  CAS  Google Scholar 

  49. Kumar P, Singh K (2010) J Nanopart Res. doi:10.1007/s11051-010-9914-5

  50. Dong Y, Peng Q, Li Y (2004) Inorg Chem Commun 7:370

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Pushpendra Kumar is grateful for support from the University Grant Commission New Delhi for providing financial assistance under Rajeev Gandhi National Fellowship Scheme as SRF (RGNFS-SRF). We are also thankful to Prof. O.N. Srivastva, Dr. Anchal Srivastva, Mr. Upendra Kumar Parashar (Dept. of Physics BHU), Prof. Dhananjay Pandey (School of Materials Science, IT-BHU), Dr. Avinash Chand Pandey, Mr. Vyom Parashar, and Mr. Raghvendra S. Yadav (N.A.C. University of Allahabad) for providing constant support and help in various ways.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kedar Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 246 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P., Singh, K. Synthesis, characterizations, and optical properties of copper selenide quantum dots. Struct Chem 22, 103–110 (2011). https://doi.org/10.1007/s11224-010-9698-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-010-9698-3

Keywords

Navigation