Skip to main content
Log in

Molecular conformations of jet-cooled 2-methylindan and 2-phenylindan

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The molecular conformations of jet-cooled 2-methylindan (2MI) and 2-phenylindan (2PI) have been studied using resonant-enhanced two-photon ionization spectroscopy in combination with ab initio calculations. Both axial (2MIax) and equatorial (2MIeq) conformers of 2MI have been observed. A 2MIeq/2MIax conformer ratio of 2.3 was estimated at 298 K, leading to the energy difference, \( \Updelta E = E_{{ 2 {\text{MI}}_{\text{ax}} }} - E_{{ 2 {\text{MI}}_{\text{eq}} }} \), of 0.49 kcal/mol. Ab initio calculations predicted three stable conformers of 2PI: two equatorial conformers (2PIeq0 and 2PIeq90), and one axial conformer (2PIax). Only the axial conformer of 2PI (2PIax) was experimentally observed. The indan ring of 2PIax is slightly more planar than the indan rings of the two equatorial conformers of 2PI because of the intramolecular Csp2–H/π interactions in 2PIax. The equatorial conformers of 2PI relax to the more stable axial conformer because of the high pre-expansion temperature (383 K), and relatively low barrier (1.68 kcal/mol) to axial–equatorial interconversion. The barrier (2.33 kcal/mol) to axial–equatorial interconversion in 2MI is high enough to prevent conformational relaxation at the pre-expansion temperature of 298 K. Intramolecular C–H/π interactions are found to be more important in determining the conformational preference of 2PI than 2MI; this can be attributed to the higher acidity of the Csp2–H bond than that of Csp3–H bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shibasaki K, Fujii A, Mikami N, Tsuzuki S (2007) J Phys Chem A 111:753

    Article  CAS  Google Scholar 

  2. Iga H, Isozaki T, Suzuki T, Ichimura T (2007) J Phys Chem A 111:5981

    Article  CAS  Google Scholar 

  3. Isozaki T, Iga H, Suzuki T, Ichimura T (2007) J Chem Phys 126:214304

    Article  Google Scholar 

  4. Tsuzuki S, Honda K, Uchimaru T, Mikami M, Fujii A (2006) J Phys Chem A 110:10163

    Article  CAS  Google Scholar 

  5. Zwier TS (1996) Annu Rev Phys Chem 47:205

    Article  CAS  Google Scholar 

  6. Al-Saadi AA, Wagner M, Laane J (2006) J Phys Chem A 110:12292

    Article  CAS  Google Scholar 

  7. Das A, Mahato KK, Panja SS, Chakraborty T (2003) J Chem Phys 119:2523

    Article  CAS  Google Scholar 

  8. Morita S, Fujii A, Mikami N, Tsuzuki S (2006) J Phys Chem A 110:10583

    Article  CAS  Google Scholar 

  9. Panja SS, Chakraborty T (2003) J Chem Phys 118:6200

    Article  CAS  Google Scholar 

  10. Hopkins JB, Powers DE, Smalley RE (1980) J Chem Phys 72:5039

    Article  CAS  Google Scholar 

  11. Im HS, Bernstein ER, Secor HV, Seeman JI (1991) J Am Chem Soc 113:4422

    Article  CAS  Google Scholar 

  12. Arp Z, Meinander N, Choo J, Laane J (2002) J Chem Phys 116:6648

    Article  CAS  Google Scholar 

  13. Barbu-Debus KL, Lahmani F, Zehnacker-Rentien A, Guchhait N, Panja SS, Chakraborty T (2006) J Chem Phys 125:174305

    Article  Google Scholar 

  14. Ottaviania P, Velinob B, Caminati W (2006) J Mol Struct 795:194

    Article  Google Scholar 

  15. Finley JP, Cable JR (1993) J Phys Chem 97:4595

    Article  CAS  Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JAJR, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.03. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  17. Wiberg KB, Castejon H, Bailey WF, Ochterski J (2000) J Org Chem 65:1181

    Article  CAS  Google Scholar 

  18. Walter JB, Ram SR (1994) Can J Phys 72:1225

    Google Scholar 

  19. Sotoyama W, Sato H, Matsuura A, Sawatari N (2006) J Mol Struct 759:165

    CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to Dr. John R. Cable, Bowling Green State University, Ohio, for providing the facility used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulhamid Hamza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamza, A. Molecular conformations of jet-cooled 2-methylindan and 2-phenylindan. Struct Chem 21, 939–945 (2010). https://doi.org/10.1007/s11224-010-9630-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-010-9630-x

Keywords

Navigation