Skip to main content

Advertisement

Log in

Design of an Orthodontic Torque Simulator for Measurement of Bracket Deformation

  • Original Paper
  • Published:
Sensing and Imaging: An International Journal Aims and scope Submit manuscript

Abstract

The design and testing of an orthodontic torque simulator that reproduces the effect of archwire rotation on orthodontic brackets is described. This unique device is capable of simultaneously measuring the deformation and loads applied to an orthodontic bracket due to archwire rotation. Archwire rotation is used by orthodontists to correct the inclination of teeth within the mouth. This orthodontic torque simulator will provide knowledge of the deformation and loads applied to orthodontic bracket that will aide clinicians by describing the effect of archwire rotation on brackets. This will also impact that design on new archwire\bracket systems by providing an assessment of performance. Deformation of the orthodontic bracket tie wings is measured using a digital image correlation process to measure elastic and plastic deformation. The magnitude of force and moments applied to the bracket though the archwire is also measured using a six-axis load cell. Initial tests have been performed on two orthodontic brackets of varying geometry to demonstrate the measurement capability of the orthodontic torque simulator. The demonstration experiment shows that a Damon Q bracket had a final plastic deformation after a single loading of 0.022 mm while the Speed bracket deformed 0.071 mm. This indicates that the Speed bracket plastically deforms 3.2 times more than the Damon Q bracket for similar magnitude of applied moment. The demonstration experiment demonstrates that bracket geometry affect the deformation of orthodontic brackets and this difference can be detected using the orthodontic torque simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Proffit, W. R., Fields, H. W., & Sarver, D. M. (2007). Contemporary orthodontics. St Louis, Mo: Elsevier.

    Google Scholar 

  2. Beckwith, F. R., Ackerman, R. J, Jr, Cobb, C. M., & Tira, D. E. (1999). An evaluation of factors affecting duration of orthodontic treatment. American Journal of Orthodontics and Dentofacial Orthopedics, 115, 439–447.

    Article  Google Scholar 

  3. Nanda, R., & Kuhlberg, A. (1997). Principles of biomechanics. In R. Nanda (Ed.), Biomechanics in clinical orthodontics (pp. 1–20). Philadelphia, PA: Saunders.

    Google Scholar 

  4. Gmyrek, H., Bourauel, C., Richter, G., & Harzer, W. (2002). Torque capacity of metal and plastic brackets with reference to materials, application, technology and biomechanics. Journal of Orofacial Orthopedics, 63, 113–128.

    Article  Google Scholar 

  5. Sadat-Khonsari, R., Moshtaghy, A., Schlegel, V., Kahl-Nieke, B., Möller, M., & Bauss, O. (2004). Torque deformation characteristics of plastic brackets: A comparative study. Journal of Orofacial Orthopedics, 65, 26–33.

    Article  Google Scholar 

  6. Kapur, R., Sinha, P. K., & Nanda, R. S. (1999). Comparison of load transmission and bracket deformation between titanium and stainless steel brackets. American Journal of Orthodontics and Dentofacial Orthopedics, 116, 275–278.

    Article  Google Scholar 

  7. Flores, D. A., Choi, L. K., Caruso, J. M., Tomlinson, J. L., Scott, G. E., & Jeiroudi, M. T. (1994). Deformation of metal brackets: A comparative study. Angle Orthodontist, 64, 283–290.

    Google Scholar 

  8. Feldner, J. C., Sarkar, N. K., Sheridan, J. J., & Lancaster, D. M. (1994). In vitro torque-deformation characteristics of orthodontic polycarbonate brackets. American Journal of Orthodontics and Dentofacial Orthopedics, 106, 265–272.

    Article  Google Scholar 

  9. Badawi, H. M., Toogood, R. W., Carey, J. P. R., Heo, G., & Major, P. W. (2008). Torque expression of self-ligating brackets. American Journal of Orthodontics and Dentofacial Orthopedics, 133, 721–728.

    Article  Google Scholar 

  10. Meling, T. R., Odegaard, J., & Meling, E. O. (1997). On mechanical properties of square and rectangular stainless steel wires tested in torsion. American Journal of Orthodontics and Dentofacial Orthopedics, 111, 310–320.

    Article  Google Scholar 

  11. Odegaard, J., Meling, T., & Meling, E. (1994). An evaluation of the torsional moments developed in orthodontic applications. An in vitro study. American Journal of Orthodontics and Dentofacial Orthopedics, 105, 392–400.

    Article  Google Scholar 

  12. Lacoursiere, R., Nobes, D., Homeniuk, D., Carey, J. P., Badawi, H., & Major, P. W. (2010). Measurement of orthodontic bracket tie wing elastic and plastic deformation by arch wire torque expression utilizing an optical image correlation technique. Journal of Dental Biomechanics, 2010(Article ID 397037).

  13. Major, T. W., Carey, J. P., Nobes, D. S., Heo, G., Melenka, G. W., & Major, P. W. (2011). An investigation into the mechanical characteristics of select self-ligated brackets at a series of clinically relevant maximum torquing angles: Loading and unloading curves and bracket deformation. European Journal of Orthodontics. doi:10.1093/ejo/cjr076.

  14. Melenka, G. W., Lacoursiere, R. A., Carey, J. P., Nobes, D. S., Heo, G., & Major, P. W. (2011). Comparison of deformation and torque expression of the orthos and orthos Ti bracket systems. European Journal of Orthodontics. doi:10.1093/ejo/cjr120.

  15. Brantley, W. A., & Eliades, T. (2001). Orthodontic brackets. In W. A. Brantley & T. Eliades (Eds.), Orthodontic materials: scientific and clinical aspects (pp. 144–147,165). New York: Thieme.

  16. Jayade, V., Annigeri, S., Jayade, C., & Thawani, P. (2007). Biomechanics of torque from twisted rectangular archwires. Angle Orthodontist, 77, 214–220.

    Article  Google Scholar 

  17. Paul, R. P. (1981). Robot manipulators: Mathematics, programming, and control: the computer control of robot manipulators. Cambridge, Mass: MIT Press.

    Google Scholar 

  18. Major, T. W., Carey, J. P., Nobes, D. S., & Major, P. W. (2010). Orthodontic bracket manufacturing tolerances and dimensional differences between select self-ligating brackets. Journal of Dental Biomechanics, 2010, 781321.

    Article  Google Scholar 

  19. Figliola, R. S. (2011). Uncertainty analysis. In A. Melhorn (Ed.), Theory and design for mechanical measurements (5th ed., p. 161). Hoboken, NJ: Wiley.

  20. Wagner, J. A., & Nikolai, R. J. (1985). Stiffness of incisor segments of edgewise arches in torsion and bending. Angle Orthodontist, 55, 37–50.

    Google Scholar 

  21. Sutton, M. A., Orteu, J. J., & Schreier, H. W. (2009). Image correlation for shape, motion and deformation measurements: Basic concepts, theory and applications. New York, NY: Springer.

    Google Scholar 

  22. Pan, B., Qian, K., Xie, H., & Asundi, A. (2009). Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review. Measurement Science and Technology, 20, art. no. 062001.

    Google Scholar 

  23. Raffel, M., Willert, C., Wereley, S., & Kompenhans, J. (2007). Mathematical background of statistical PIV evaluation. In Particle image velocimetry: A practical guide (2nd ed., p. 79). New York: Springer.

  24. Haddadi, H., & Belhabib, S. (2008). Use of rigid-body motion for the investigation and estimation of the measurement errors related to digital image correlation technique. Optics and Lasers in Engineering, 46, 185–196.

    Article  Google Scholar 

  25. Chu, T. C., Ranson, W. F., & Sutton, M. A. (1985). Applications of digital-image-correlation techniques to experimental mechanics. Experimental Mechanics, 25, 232–244.

    Article  Google Scholar 

  26. Hild, F., & Roux, S. (2006). Digital image correlation: From displacement measurement to identification of elastic properties—A review. Strain, 42, 69–80.

    Article  Google Scholar 

  27. LaVision GmbH. Product-manual for DaVis 7.2 StrainMaster 2D Item-Number(s): 1105021.

  28. Crump, D. A., Dulieu-Barton, J. M., & Savage, J. (2010). Design and commission of an experimental test rig to apply a full-scale pressure load on composite sandwich panels representative of an aircraft secondary structure. Measurement Science and Technology, 21, art. no. 015108.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Carey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melenka, G.W., Nobes, D.S., Major, P.W. et al. Design of an Orthodontic Torque Simulator for Measurement of Bracket Deformation. Sens Imaging 14, 57–80 (2013). https://doi.org/10.1007/s11220-013-0079-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11220-013-0079-z

Keywords

Navigation