Skip to main content
Log in

Design and Ground Verification for Multispectral Camera on the Mars Tianwen-1 Rover

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

As part of China’s first Mars exploration mission ‘Tianwen-1’, the Zhurong rover has successfully touched down on the surface of southern Utopia Planitia on May 15th 2021 and has been conducting surface operations for several months. A multispectral camera (MSCam), as an important payload onboard the Zhurong rover, aims to acquire multispectral images to investigate the morphological characteristics and mineralogic properties of the Martian surface. In this study, a detailed optimization design for the MSCam was carried out to achieve the abovementioned scientific objectives. The MSCam can perform multispectral imaging without chromatic aberration by utilizing eight narrow bandwidth filters made of glass of different thicknesses. Clear images of observation targets at different distances can be obtained by utilizing the six focal plane compensation lenses of varying thicknesses through the rotation of wheels. Calibration experiments, key specification tests and ground verification tests were also conducted in this study. Our results show that the pixel resolution of the MSCam can reach 0.146 mrad, the system static modulation transfer function (MTF) of the MSCam is better than 0.25@525 nm, and the signal-to-noise ratio (SNR) is higher than 40 dB, all of which allow clear imaging and accurate multispectral data acquisition of the targets. The high-resolution images obtained by the MSCam will provide detailed geological context for the data interpretation of other payloads on the rover, such as the Mars surface composition detector (MarSCoDe). The mineralogy information of the targets (e.g., fresh rock, dune) indicated by the MSCam multispectral data will also help to constrain the surface material composition of Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • D. Barnes, M. Wilding, M. Gunn, S. Pugh, L. Tyler, A. Coates et al., Multi-spectral vision processing for the ExoMars 2018 mission, in ASTRA, vol. 12 (2011), p. 1

    Google Scholar 

  • J.F. Bell III et al., Mars exploration rover athena panoramic camera (Pancam) investigation. J. Geophys. Res. 108(E12), 8063 (2003). https://doi.org/10.1029/2003JE002070

    Article  Google Scholar 

  • J.F. Bell III et al., Pancam multispectral imaging results from the Opportunity rover at Meridiani Planum. Science 306, 1703–1709 (2004)

    Article  ADS  Google Scholar 

  • J.F. Bell III, J. Joseph, J.N. Sohl-Dickstein, H.M. Arneson, M.J. Johnson, M.T. Lemmon, D. Savransky, In-flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments. J. Geophys. Res., Planets 111(E2), E02S03 (2006)

    Article  ADS  Google Scholar 

  • J.F. Bell III et al., Mastcam multispectral imaging results from the MarsScience Laboratory investigation in Yellowknife Bay, in European Planetary Science Congress 2013, EPSC2013-762, vol. 8 (2013)

    Google Scholar 

  • J.F. Bell, M.C. Malin, M.A. Caplinger et al., in 43rd Lunar and Planetary Science Conference, vol. 2541 (2012)

    Google Scholar 

  • J.F. Bell, A. Godber, S. McNair, M.A. Caplinger, J.N. Maki, M.T. Lemmon, R.G. Deen, The Mars Science Laboratory Curiosity rover Mastcam instruments: preflight and in-flight calibration, validation, and data archiving. Earth Space Sci. 4(7), 396–452 (2017). https://doi.org/10.1002/2016ea000219

    Article  ADS  Google Scholar 

  • J.L. Bishop, D. Loizeau, N.K. McKeown, L. Saper, M.D. Dyar, D.J. DesMarais, M. Parente, S.L. Murchie, Planet. Space Sci. 86, 130 (2013)

    Article  ADS  Google Scholar 

  • W.H. Farrand, J.R. Johnson, M.S. Rice, A. Wang, J.F. Bell III, VNIR multispectral observations of aqueous alteration materials by the Pancams on the Spirit and Opportunity Mars Exploration Rovers. Am. Mineral. 101(9), 2005–2019 (2016)

    Article  ADS  Google Scholar 

  • Y. Geng, J. Zhou, S. Li et al., J. Deep Space Explor. 5, 05 (2018) (in Chinese)

    Google Scholar 

  • C. Li, J. Liu, Y. Geng et al., J. Deep Space Explor. 5, 5 (2018) (in Chinese)

    Google Scholar 

  • Y. Lin, D. Wang, B. Miao, Z. Ouyang, X. Liu, Y. Ju, Chin. Sci. Bull. 48 (2003)

  • Y. Lin, T. Liu, W. Shen, L. Xu, M. Miao, Meteorit. Planet. Sci. Suppl. 43 (2008)

  • J.N. Maki, J.J. Lorre, P.H. Smith, R.D. Brandt, D.J. Steinwand, The color of Mars: spectrophotometric measurements at the Pathfinder landing site. J. Geophys. Res., Planets 104(E4), 8781–8794 (1999)

    Article  ADS  Google Scholar 

  • J.N. Maki, J.F. Bell III, K.E. Herkenhoff et al., J. Geophys. Res. 108, 8071 (2003)

    Google Scholar 

  • M.C. Malin et al., The Mars Science Laboratory (MSL) Mast cameras and Descent imager: investigation and instrument descriptions. Earth Space Sci. 4, 506–539 (2017). https://doi.org/10.1002/2016EA000252

    Article  ADS  Google Scholar 

  • Z. Ouyang, F. Xiao, Spacecr. Environ. Eng. 3, 28 (2011) (in Chinese)

    Google Scholar 

  • Z. Ouyang, F. Xiao, Spacecr. Environ. Eng. 29, 6 (2012) (in Chinese)

    Google Scholar 

  • J. Shi, Z. Zhang, Z. Liu et al., Prog. Geophys. 12, 4 (1997) (in Chinese)

    Google Scholar 

  • P.H. Smith et al., Results from the Mars Pathfinder camera. Science 278, 5 (1997a)

    Article  Google Scholar 

  • P.H. Smith et al., The imager for Mars Pathfinder experiment. J. Geophys. Res. 102(E2), 4003–4025 (1997b)

    Article  ADS  Google Scholar 

  • S.W. Squyres et al., In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 306, 1709–1714 (2004)

    Article  ADS  Google Scholar 

  • F. Tony Ghaemi, Opt. Eng. 48, 10 (2009)

    Google Scholar 

  • D.T. Vaniman et al., Mineralogy of a mudstone at Yellowknife Bay, Gale Crater, Mars. Science 343(6551), 198–204 (2013). https://doi.org/10.1126/science.1243480

    Article  Google Scholar 

  • H. Wang, J. Yang, B. Xue et al., Spectrosc. Spectr. Anal. 38, 03 (2018) (in Chinese)

    Google Scholar 

  • D.F. Wellington et al., Visible to near-infrared MSL/Mastcam multispectral imaging: initial results from select high-interest science targets within Gale Crater, Mars. Am. Mineral. 102, 1202–1217 (2017)

    Article  ADS  Google Scholar 

  • L. Wendt, C. Gross, T. Kneissl, M. Sowe, J.P. Combe, L. LeDeit, P.C. McGuire, G. Neukum, Icarus 213, 1 (2011)

    Article  Google Scholar 

  • Z. Zhang, Trans. Pattern Anal. Mach. Intell. 22, 11 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Da-Wei Liu or Juan Lyu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The Huoxing-1 (HX-1) / Tianwen-1 (TW-1) mission to Mars

Edited by Chunlai Li and Jianjun Liu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, JF., Liu, DW., Xue, B. et al. Design and Ground Verification for Multispectral Camera on the Mars Tianwen-1 Rover. Space Sci Rev 218, 19 (2022). https://doi.org/10.1007/s11214-022-00886-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-022-00886-3

Keywords

Navigation