Skip to main content
Log in

The Juno Mission

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Juno is a PI-led mission to Jupiter, the second mission in NASA’s New Frontiers Program. The 3625-kg spacecraft spins at 2 rpm and is powered by three 9-meter-long solar arrays that provide ∼500 watts in orbit about Jupiter. Juno carries eight science instruments that perform nine science investigations (radio science utilizes the communications antenna). Juno’s science objectives target Jupiter’s origin, interior, and atmosphere, and include an investigation of Jupiter’s polar magnetosphere and luminous aurora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a
Fig. 1b
Fig. 2
Fig. 3a
Fig. 3b
Fig. 3c
Fig. 3d
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

APL:

Applied Physics Laboratory

DSM:

Deep Space Maneuver

DSN:

Deep Space Network

EFB:

Earth Flyby

EGA:

Earth Gravity Assist

EOM:

End of Mission

EOS:

Equation of State

FDA:

Fractional Data Allocation

GRAV:

Gravity Science

GSFC:

Goddard Space Flight Center

IOT:

Instrument Operations Team

ITAR:

International Traffic in Arms Regulation

JADE:

Jovian Auroral Distributions Experiment

JEDI:

Juno Energetic particle Detector Instrument

JIRAM:

Jovian InfraRed Auroral Mapper

JOI:

Jupiter Orbit Insertion

JPL:

Jet Propulsion Laboratory

JSOC:

Juno Science Operations Center

JunoCam:

Juno Camera

KOZ:

Keep Out Zone

MAG:

Magnetometer

MHD:

Magnetohydrodynamic

MOS:

Mission Operations System

MPST:

Mission Planning and Sequencing Team

MWR:

MicroWave Radiometer

NAIF:

Navigation and Information Facility

NASA:

National Aeronautics and Space Administration

NAV:

Navigation

PDS:

Planetary Data System

PJ:

Perijove

PRM:

Period Reduction Maneuver

SAP:

Science Activity Plan

SCT:

Spacecraft Team

SPWG:

Science Planning Working Group

SwRI:

Southwest Research Institute

UCLA:

University of California Los Angeles

UVS:

UltraViolet Spectrograph

References

  • A. Adriani, A. Coradini, G. Filacchione, J.I. Lunine, A. Bini, C. Pasqui, L. Calamai, F. Colosimo, B.M. Dinelli, D. Grassi, G. Magni, M.L. Moriconi, R. Orosei, JIRAM, the image spectrometer in the near-infrared on board the Juno mission to Jupiter. Astrobiology 8, 613–622 (2008)

    Article  ADS  Google Scholar 

  • A. Adriani, G. Filacchione, T. Di Iorio et al., JIRAM, the Jovian Infrared Auroral Mapper. Space Sci. Rev. (2017). doi:10.1007/s11214-014-0094-y

    Google Scholar 

  • Y. Alibert, C. Mordasini, W. Benz, C. Winisdoerffer, Models of giant planet formation with migration and disc evolution. Astron. Astrophys. 434, 343–353 (2005)

    Article  ADS  Google Scholar 

  • S.W. Asmar, S.J. Bolton, D.R. Buccino et al., The Juno gravity science instrument. Space Sci. Rev. (2017). doi:10.1007/s11214-017-0428-7

    Google Scholar 

  • S.K. Atreya, M.H. Wong, T.C. Owen, P.R. Mahaffy, H.B. Niemann, I. de Pater, P. Drossart, T. Encrenaz, A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin. Planet. Space Sci. 47, 1243–1262 (1999)

    Article  ADS  Google Scholar 

  • F. Bagenal, A. Adriani, F. Allegrini et al., Magnetospheric science objectives of the Juno mission. Space Sci. Rev. (2017). doi:10.1007/s11214-014-0036-8

    Google Scholar 

  • I. Baraffe, G. Chabrier, T. Barman, Structure and evolution of super-Earth to super-Jupiter exoplanets. I. Heavy element enrichment in the interior. Astron. Astrophys. 482, 315–332 (2008)

    Article  ADS  Google Scholar 

  • H.N. Becker, J.W. Alexander, A. Adriani et al., The Juno Radiation Monitoring (RM) investigation. Space Sci. Rev. (2017). doi:10.1007/s11214-017-0345-9

    Google Scholar 

  • D.E. Bernard, R.D. Abelson, J.R. Johannesen et al., Europa planetary protection for Juno Jupiter orbiter. Adv. Space Res. 52, 547–568 (2013). doi:10.1016/j.asr.2013.03.015

    Article  ADS  Google Scholar 

  • B. Bonfond, D. Grodent, J.-C. Gérard, T. Stallard, J.T. Clarke, M. Yoneda, A. Radioti, J. Gustin, Auroral evidence of Io’s control over the magnetosphere of Jupiter. Geophys. Res. Lett. 39, 1105 (2012)

    Article  ADS  Google Scholar 

  • A.P. Boss, Evolution of the solar nebula. IV. Giant gaseous protoplanet formation. Astrophys. J. 503, 923–937 (1998)

    Article  ADS  Google Scholar 

  • A.P. Boss, Formation of gas and ice giant planets. Earth Planet. Sci. Lett. 202, 513–523 (2002). doi:10.1016/S0012-821X(02)00808-7

    Article  ADS  Google Scholar 

  • F.H. Busse, A simple model of convection in the Jovian atmosphere. Icarus 29, 255–260 (1976)

    Article  ADS  Google Scholar 

  • J.E. Chambers, G.W. Wetherill, Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus 136, 304–312 (1998)

    Article  ADS  Google Scholar 

  • J.E.P. Connerney, M.H. Acuna, N.F. Ness, Modeling the Jovian current sheet and inner magnetosphere. J. Geophys. Res. 86, 8370–8384 (1981)

    Article  ADS  Google Scholar 

  • J.E.P. Connerney, M.H. Açuna, N.F. Ness, T. Satoh, New models of Jupiter’s magnetic field constrained by the Io Flux Tube footprint. J. Geophys. Res. 103, 11929–11939 (1998)

    Article  ADS  Google Scholar 

  • J.E.P. Connerney, M. Benn, J.B. Bjarno et al., The Juno magnetic field investigation. Space Sci. Rev. (2017). doi:10.1007/s11214-017-0334-z

    Google Scholar 

  • B.J. Conrath, D. Gautier, Saturn helium abundance: a reanalysis of Voyager measurements. Icarus 144, 124–134 (2000)

    Article  ADS  Google Scholar 

  • R.W. Ebert, F. Bagenal, D. McComas, C. Fowler, A survey of solar wind conditions at 5 AU: a tool for interpreting solar wind-magnetosphere interactions at Jupiter. Front. Astron. Space Sci. 1, 4 (2014)

    Article  ADS  Google Scholar 

  • J.J. Fortney, W.B. Hubbard, Phase separation in giant planets: inhomogeneous evolution of Saturn. Icarus 164, 228–243 (2003)

    Article  ADS  Google Scholar 

  • J.J. Fortney, W.B. Hubbard, Effect of helium phase separation on the evolution of extrasolar giant planets. Astrophys. J. 608, 1039–1049 (2004)

    Article  ADS  Google Scholar 

  • J.J. Fortney, M. Ikoma, N. Nettleman, T. Guillot, M.S. Marley, Self-consistent model atmospheres and the cooling of the solar system’s giant planets. Astrophys. J. 729, 32 (2011), 14pp.

    Article  ADS  Google Scholar 

  • M. French, A. Becker, W. Lorenzen, N. Nettelmann, M. Bethkenhagen, J. Wicht, R. Redmer, Ab initio simulations for material properties along the Juptier adiabat. Astrophys. J. Suppl. 202, 5 (2012). doi:10.1088/0067-0049/202/1/5

    Article  ADS  Google Scholar 

  • D. Gautier, F. Hersant, O. Mousis, J.I. Lunine, Enrichments in volatiles in Jupiter: a new interpretation of the Galileo measurements. Astrophys. J. Lett. 550, L227–L230 (2001) (Erratum 559, L183)

    Article  ADS  Google Scholar 

  • P.J. Gierasch, A.P. Ingersoll, D. Banfield, S.P. Ewald, P. Helfenstein, A. Simon-Miller, A. Vasavada, H.H. Breneman, D.A. Senske (Galileo Imaging Team), Observation of moist convection in Jupiter’s atmosphere. Nature 403, 628–630 (2000)

    Article  ADS  Google Scholar 

  • G.R. Gladstone, S.C. Persyn, J.S. Eterno et al., The ultraviolet spectrograph on NASA’s Juno mission. Space Sci. Rev. (2014). doi:10.1007/s11214-014-0040-z

    Google Scholar 

  • R.S. Grammier, A look inside the Juno mission to Jupiter. IEEE Aerospace Conference, paper #1582 (2009)

  • D. Grodent, J.T. Clarke, J. Kim, J.H. Waite Jr., S.W.H. Cowley, Jupiter’s main auroral oval observed with HST-STIS. J. Geophys. Res. 108, 1389 (2003)

    Article  Google Scholar 

  • S.M. Guertin, G.R. Allen, D.J. Sheldon, Programmatic Impact of SDRAM SEFI, 16–20 July 2012, IEEE Radiation Effects Data Workshop (2012). doi:10.1109/REDW.2012.6353722

    Book  Google Scholar 

  • T. Guillot, A comparison of the interiors of Jupiter and Saturn. Planet. Space Sci. 47, 1175–1182 (1999)

    Article  ADS  Google Scholar 

  • T. Guillot, The interiors of giant planets: models and outstanding questions. Annu. Rev. Earth Planet. Sci. 33, 493–530 (2005)

    Article  ADS  Google Scholar 

  • T. Guillot, D. Gautier, W.B. Hubbard, New constraints on the composition of Jupiter from Galileo measurements and interior models. Icarus 130, 534–539 (1997)

    Article  ADS  Google Scholar 

  • T. Guillot, D.J. Stevenson, W.B. Hubbard, D. Saumon, The interior of Jupiter, in Jupiter, ed. by F. Bagenal et al. (Cambridge University Press, Cambridge, 2004), pp. 35–57, Chap. 3

    Google Scholar 

  • C.J. Hansen, M.A. Caplinger, A. Ingersoll et al., JunoCam: Juno’s outreach camera. Space Sci. Rev. (2017). doi:10.1007/s11214-014-0079-x

    Google Scholar 

  • P. Helled, M. Podolak, A. Kovetz, Planetesimal capture in the disk instability model. Icarus 185, 64–71 (2006)

    Article  ADS  Google Scholar 

  • F. Hersant, D. Gautier, F. Huré, A two-dimensional model for the primordial nebula constrained by D/H measurements in the Solar System: implications for the formation of giant planets. Astrophys. J. 554, 391–407 (2001)

    Article  ADS  Google Scholar 

  • F. Hersant, D. Gautier, J.I. Lunine, Enrichment in volatiles in the giant planets of the Solar System. Planet. Space Sci. 52, 623–641 (2004)

    Article  ADS  Google Scholar 

  • W.B. Hubbard, Thermal structure of Jupiter. Astrophys. J. 152, 745–754 (1968)

    Article  ADS  Google Scholar 

  • W.B. Hubbard, The Jovian surface condition and cooling rate. Icarus 30, 305–310 (1977)

    Article  ADS  Google Scholar 

  • W.B. Hubbard, Gravitational signature of Jupiter’s deep zonal flows. Icarus 137, 357–359 (1999)

    Article  ADS  Google Scholar 

  • A.P. Ingersoll, D. Pollard, Motion in the interiors and atmospheres of Jupiter and Saturn—scale analysis, anelastic equations, barotropic stability criterion. Icarus 52, 62–80 (1982)

    Article  ADS  Google Scholar 

  • M.E. Janssen, J.E. Oswald, S.T. Brown, S. Gulkis, S.M. Levin, S.J. Bolton, M.D. Allison, S.K. Atreya, D. Gautier, A.P. Ingersoll, J.I. Lunine, G.S. Orton, T.C. Owen, P.G. Steffes, V. Adumitroaie, A. Belloti, L.A. Jewell, C. Li, L. Li, F.A. Oyafuso, D. Santos-Costa, E. Sarkissian, R. Williamson, J.K. Arballo, A. Kityakara, A. Ulloa-Severino, J.C. Chen, F.W. Maiwald, A.S. Sahakian, P.J. Pingree, K.A. Lee, A.S. Mazer, R. Redick, R.E. Hodges, R.C. Hughes, G. Bedrosian, D.E. Dawson, W.A. Hatch, D.S. Russell, N.F. Chamberlain, M.S. Zawadski, B. Khayatian, B.R. Franklin, H.A. Conley, J.G. Kempenaar, M.S. Loo, E.T. Sunada, V. Vorperion, C.C. Wang, MWR microwave radiometer for the Juno mission to Jupiter. Space Sci. Rev. (2017). doi:10.1007/s11214-017-0349-5

    Google Scholar 

  • S.P. Joy, M.G. Kivelson, R.J. Walker, K.K. Khurana, C.T. Russell, T. Ogino, Probabilistic models of the Jovian magnetopause and bow shock locations. J. Geophys. Res. 107, A101309 (2002). doi:10.1029/2001JA009146

    Article  ADS  Google Scholar 

  • S. Kayali, W. McAlpine, H. Becker, L. Scheick, in Juno Radiation Design and Implementation, IEEE Aerospace Conf., 3–10 March 2012 (2012), 3–10. doi:10.1109/AERO.2012.6187013

    Google Scholar 

  • W.S. Kurth, G.B. Hospodarsky, D.L. Kirchner et al., The Juno waves investigation, Space Sci. Rev. (2017). doi:10.1007/s11214-017-0396-y

    Google Scholar 

  • J. Leconte, G. Chabrier, A new vision of giant planet interiors: impact of double diffusive convection. Astron. Astrophys. 540, A20 (2012), 13 pp

    Article  ADS  Google Scholar 

  • J. Lewis, Juno spacecraft operations lessons learned for early cruise mission phases. IEEE Aerospace Conference (2014)

  • G.F. Lindal, G.E. Wood, G.S. Levy, J.D. Anderson, D.N. Sweetnam, H.B. Hotz, B.J. Buckles, D.P. Holmes, P.E. Doms, V.R. Eshleman, G.L. Tyler, T.A. Croft, The atmosphere of Jupiter—an analysis of the Voyager radio occultation measurements. J. Geophys. Res. 86, 8721–8727 (1981)

    Article  ADS  Google Scholar 

  • J.J. Lissauer, Planet formation. Annu. Rev. Astron. Astrophys. 31, 129–174 (1993)

    Article  ADS  Google Scholar 

  • K. Lodders, Jupiter formed with more tar than ice. Astrophys. J. 6111, 587–597 (2004)

    Article  ADS  Google Scholar 

  • F. Low, Infrared observations of Venus, Jupiter and Saturn at \(\lambda 20\mu\). Astron. J. 71, 391 (1966)

    Article  ADS  Google Scholar 

  • M. Lozovsky, R. Helled, E.D. Rosenberg, P. Bodenheimer, Jupiter’s formation and its primordial internal structure. Astrophys. J. 836, 1–31 (2017). doi:10.3847/1538-4357/836/2/227

    Article  Google Scholar 

  • J.I. Lunine, D.M. Hunten, Moist convection and the abundance of water in the troposphere of Jupiter. Icarus 69, 566–570 (1987)

    Article  ADS  Google Scholar 

  • B.H. Mauk, D.K. Haggerty, S.E. Jaskulek et al., The Jupiter energetic particle detector instrument (JEDI) investigation for the Juno mission. Space Sci. Rev. (2013). doi:10.1007/s11214-013-0025-3

    Google Scholar 

  • L. Mayer, T. Quinn, J. Wadsley, J. Stadel, Formation of giant planets by fragmentation of protoplanetary disks. Science 298, 1756–1759 (2002)

    Article  ADS  Google Scholar 

  • D.J. McComas, N. Alexander, F. Allegrini et al., The Jovian Auroral Distributions Experiment (JADE) on the Juno mission to Jupiter. Space Sci. Rev. (2013). doi:10.1007/s11214-013-9990-9

    Google Scholar 

  • B. Militzer, W.B. Hubbard, J. Vorberger, I. Tamblyn, S.A. Bonev, Astrophys. J. 688, L45 (2008)

    Article  ADS  Google Scholar 

  • H. Mizuno, Formation of the giant planets. Prog. Theor. Phys. 64, 544–557 (1980)

    Article  ADS  Google Scholar 

  • O. Mousis, J.I. Lunine, N. Madhusudhan, T.V. Johnson, Nebular water depletion as the cause of Jupiter’s low oxygen abundance. Astrophys. J. Lett. 751, L7 (2012). doi:10.1088/2041-8205/751/1/L7

    Article  ADS  Google Scholar 

  • N. Nettelmann, B. Holst, A. Kietzmann, M. French, R. Redmer, Ab initio equation of state data for hydrogen, helium, and water and the internal structure of Jupiter. Astrophys. J. 683, 1217–1228 (2008)

    Article  ADS  Google Scholar 

  • R. Nybakken, The Juno mission to Jupiter—a pre-launch update. IEEE Aerospace Conference paper #1179 (2011)

  • R. Nybakken, The Juno mission to Jupiter—launch campaign and early cruise report. IEEE Aerospace Conference (2012)

  • T. Owen, Th. Encrenaz, Element abundances and isotopic ratios in the giant planets and Titan. Space Sci. Rev. 106, 121–138 (2003)

    Article  ADS  Google Scholar 

  • T. Owen, P. Mahaffy, H.B. Niemann, S.K. Atreya, T.M. Donahue, A. Bar-Nun, I. de Pater, A low temperature origin for the planetesimals that formed Jupiter. Nature 402, 269–270 (1999)

    Article  ADS  Google Scholar 

  • J.B. Pollack, O. Hubickyi, P. Bodenheimer, J.J. Lissauer, M. Podolak, Y. Greenzweig, Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996a)

    Article  ADS  Google Scholar 

  • J.B. Pollack, O. Hubickyj, P. Bodenheimer, J.J. Lissauer, M. Podolak, Y. Greenzweig, A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine stable isotope enrichment among gaseous molecules. Icarus 124, 62–85 (1996b)

    Article  ADS  Google Scholar 

  • D. Saumon, T. Guillot, Shock compression of deuterium and the interiors of Jupiter and Saturn. Astrophys. J. 609, 1170–1180 (2004)

    Article  ADS  Google Scholar 

  • D. Saumon, W.B. Hubbard, A. Burrows, T. Guillot, J.I. Lunine, G. Chabrier, A theory of extrasolar giant planets. Astrophys. J. 460, 993–1018 (1996)

    Article  ADS  Google Scholar 

  • A. Seiff, D.B. Kirk, T.C.D. Knight, R.E. Young, J.D. Mihalov, L.A. Young, F.S. Milos, G. Schubert, R.C. Blanchard, D. Atkinson, Thermal structure of Jupiter’s atmosphere near the edge of a 5-μm hot spot in the North equatorial belt. J. Geophys. Res. 103, 22857–22890 (1998)

    Article  ADS  Google Scholar 

  • A.P. Showman, T.E. Dowling, Nonlinear simulations of Jupiter’s 5-micron hot spots. Science 289, 1737–1740 (2000)

    ADS  Google Scholar 

  • S.K. Stephens, The Juno mission to Jupiter: lessons from cruise and plans for orbital operations and science return. IEEE Aerospace Conference, paper # 2150 (2015)

  • D.J. Stevenson, Thermodynamics and phase separation of dense fully ionized hydrogen-helium fluid mixtures. Phys. Rev. B 12, 3999–4007 (1975)

    Article  ADS  Google Scholar 

  • D.J. Stevenson, Planetary magnetic fields: achievements and prospects. Space Sci. Rev. (2009). doi:10.1007/sl11214-009-9572-z

    Google Scholar 

  • D.J. Stevenson, E.E. Salpeter, The dynamics and helium distribution in hydrogen-helium planets. Astrophys. J. Suppl. Ser. 35, 239–261 (1977)

    Article  ADS  Google Scholar 

  • U. Von Zahn, D.M. Hunten, G. Lehmacher, Helium in Jupiter’s atmosphere: results from the Galileo probe helium interferometer experiment. J. Geophys. Res. 103, 22815–22829 (1998)

    Article  ADS  Google Scholar 

  • H.F. Wilson, B. Militzer, Solubility of water ice in metallic hydrogen: consequences for core erosion in gas giant planets. Astrophys. J. 745, 54 (2011)

    Article  ADS  Google Scholar 

  • H.F. Wilson, B. Militzer, Rocky core solubility in Jupiter and giant exoplanets. Phys. Rev. Lett. 108, 111101 (2012)

    Article  ADS  Google Scholar 

  • M.H. Wong, P.R. Mahaffy, S.K. Atreya, H.B. Niemann, T.C. Owen, Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter. Icarus 171, 153–170 (2004)

    Article  ADS  Google Scholar 

  • M.H. Wong, J.I. Lunine, S.K. Atreya, T. Johnson, P.R. Mahaffy, T.C. Owen, T. Encrenaz, Oxygen and other volatiles in the giant planets and their satellites. Rev. Mineral. Geochem. 68, 219–246 (2008)

    Article  Google Scholar 

  • G. Wuchterl, T. Guillot, J.J. Lissauer, Giant planet formation, in Protostars and Planets IV, ed. by V. Mannings, A.P. Boss, S.S. Russel (University of Arizona Press, Tucson, 2000), pp. 1081–1109

    Google Scholar 

Download references

Acknowledgements

The Juno mission would not have been possible without the incredible dedication, commitment, and experience of the many hundreds of people who have worked on Juno. To call out a few by name would feel like a disservice to those not mentioned. They each have our incredible gratitude and appreciation for their efforts. In addition, we benefitted tremendously from the strong support from each of our partner organizations. Funding for the Juno mission was provided by NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Bolton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolton, S.J., Lunine, J., Stevenson, D. et al. The Juno Mission. Space Sci Rev 213, 5–37 (2017). https://doi.org/10.1007/s11214-017-0429-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-017-0429-6

Keywords

Navigation