Skip to main content
Log in

Galaxy Alignments: Theory, Modelling & Simulations

  • Published:
Space Science Reviews Aims and scope Submit manuscript

An Erratum to this article was published on 12 November 2015

Abstract

The shapes of galaxies are not randomly oriented on the sky. During the galaxy formation and evolution process, environment has a strong influence, as tidal gravitational fields in the large-scale structure tend to align nearby galaxies. Additionally, events such as galaxy mergers affect the relative alignments of both the shapes and angular momenta of galaxies throughout their history. These “intrinsic galaxy alignments” are known to exist, but are still poorly understood. This review will offer a pedagogical introduction to the current theories that describe intrinsic galaxy alignments, including the apparent difference in intrinsic alignment between early- and late-type galaxies and the latest efforts to model them analytically. It will then describe the ongoing efforts to simulate intrinsic alignments using both \(N\)-body and hydrodynamic simulations. Due to the relative youth of this field, there is still much to be done to understand intrinsic galaxy alignments and this review summarises the current state of the field, providing a solid basis for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. However, there are methods to measure dark matter halo ellipticities through observations, e.g. galaxy-galaxy lensing (e.g. Natarajan and Refregier 2000; Hoekstra et al. 2004; Mandelbaum et al. 2006a; Parker et al. 2007; van Uitert et al. 2012; Schrabback et al. 2015).

  2. E.g. the Kilo Degree Survey, KiDS: http://kids.strw.leidenuniv.nl; the Dark Energy Survey, DES: http://www.darkenergysurvey.org; the Hyper Suprime-Cam Survey, HSC: http://www.naoj.org/Projects/HSC; Euclid: http://www.euclid-ec.org and http://sci.esa.int/euclid; the Large Synoptic Survey Telescope, LSST: http://www.lsst.org/lsst; and the Wide Field InfraRed Suvery Telescope, WFIRST: http://wfirst.gsfc.nasa.gov.

  3. The term gravitational shear could be misleading here since the intrinsic ellipticity, \(\epsilon^{\mathrm{S}}\), is also influenced by (tidal) gravitational effects as shown in this section. However, the term gravitational shear for the effects of gravitational lensing has been in use for a long time and it would be unwise to adopt a different convention here. Throughout, the term gravitational shear is synonymous with gravitational lensing.

  4. If a two-component ellipticity seems unfamiliar, it is worth considering that the standard geometric representation of an ellipse using an axis ratio and a position angle also requires two numbers.

  5. Note that the terms satellite and satellite distribution are interchangeable with subhalo and subhalo distribution when measuring dark matter alignments.

  6. The terms “sheet” and “wall” are used interchangeably throughout the literature and this review.

  7. This may not be true in the presence of photometric redshift errors, where the relative positions of galaxies along the line of sight may be confused.

  8. Note that Hirata and Seljak (2010) is an updated version of the original Hirata and Seljak (2004) paper that fixes an error in a conversion factor that propagated through several equations.

  9. Navarro et al. (1996) fitted a universal density profile to dark matter haloes in \(N\)-body simulations. This profile is now known as the NFW profile.

  10. Note that some studies consider overdensities relative to the underlying matter density, rather than the critical density. Such overdensities can be easily scaled, due to the fact that \(\varOmega_{M}\) is the ratio between the mean matter density and the critical density.

  11. This equation is actually the quadrupole tensor of the mass distribution, but as it is regularly referred to as the moment of inertia tensor in the literature, this is the convention followed throughout this review.

  12. Note that the subscript ‘H’ in this alignment is the cluster cosmic web element and the ‘S’ represents the galaxy-sized and smaller halo substructure within the cluster.

  13. While this simulation includes hydrodynamics, the results are focused on dark matter haloes and appear to be independent of the baryons, hence its inclusion in this section.

  14. Note that the terms “hydrodynamic” and “gasdynamic” are used interchangeably in the literature, although hydrodynamic is adopted in this review.

  15. There are measurements in the literature that use as few as 20 particles. The results in this paper suggest that those results should be approached with caution.

  16. Some of these studies use a halo occupation distribution (HOD; e.g. Berlind and Weinberg 2002) approach to reproduce observed galaxy properties. This is a more statistical approach to matching galaxy properties than semi-analytic modelling.

  17. The large box size would account for the large scales that should be accounted for in studies of the large-scale structure and the high mass resolution would resolve the shapes and details of individual galaxies with high precision.

  18. Some differences between the hydrodynamic and dark matter-only simulation haloes should be expected and may arise if the halo finders split a structure into different haloes or some haloes fall below the minimum particle threshold between the realisations etc.

  19. In order to match ellipticity distributions, hydrodynamic simulations would need to resolve the thickness of the discs accurately, which would require resolving interstellar medium processes accurately. It is not clear that this final point will be possible in the simulations, so this task may have to remain on the “wish” list.

References

  • M.G. Abadi, J.F. Navarro, M. Fardal, A. Babul, M. Steinmetz, Galaxy-induced transformation of dark matter haloes. Mon. Not. R. Astron. Soc. 407, 435–446 (2010). doi:10.1111/j.1365-2966.2010.16912.x

    Article  ADS  Google Scholar 

  • I. Agustsson, T.G. Brainerd, The locations of satellite galaxies in a \(\varLambda\mathrm{CDM}\) universe. Astrophys. J. 650, 550–559 (2006). doi:10.1086/507084

    Article  ADS  Google Scholar 

  • I. Agustsson, T.G. Brainerd, Anisotropic locations of satellite galaxies: Clues to the orientations of galaxies within their dark matter halos. Astrophys. J. 709, 1321–1336 (2010). doi:10.1088/0004-637X/709/2/1321

    Article  ADS  Google Scholar 

  • B. Allgood, R.A. Flores, J.R. Primack, A.V. Kravtsov, R.H. Wechsler, A. Faltenbacher, J.S. Bullock, The shape of dark matter haloes: Dependence on mass, redshift, radius and formation. Mon. Not. R. Astron. Soc. 367, 1781–1796 (2006). doi:10.1111/j.1365-2966.2006.10094.x

    Article  ADS  Google Scholar 

  • G. Altay, J.M. Colberg, R.A.C. Croft, The influence of large-scale structures on halo shapes and alignments. Mon. Not. R. Astron. Soc. 370, 1422–1428 (2006). doi:10.1111/j.1365-2966.2006.10555.x

    Article  ADS  Google Scholar 

  • R.E. Angulo, C.G. Lacey, C.M. Baugh, C.S. Frenk, The fate of substructures in cold dark matter haloes. Mon. Not. R. Astron. Soc. 399, 983–995 (2009). doi:10.1111/j.1365-2966.2009.15333.x

    Article  ADS  Google Scholar 

  • M.A. Aragon-Calvo, L.F. Yang, The hierarchical nature of the spin alignment of dark matter haloes in filaments. Mon. Not. R. Astron. Soc. 440, 46–50 (2014). doi:10.1093/mnrasl/slu009

    Article  ADS  Google Scholar 

  • M.A. Aragón-Calvo, R. van de Weygaert, B.J.T. Jones, J.M. van der Hulst, Spin alignment of dark matter halos in filaments and walls. Astrophys. J. Lett. 655, 5–8 (2007). doi:10.1086/511633

    Article  ADS  Google Scholar 

  • V. Avila-Reese, P. Colín, S. Gottlöber, C. Firmani, C. Maulbetsch, The dependence on environment of cold dark matter halo properties. Astrophys. J. 634, 51–69 (2005). doi:10.1086/491726

    Article  ADS  Google Scholar 

  • J. Bailin, M. Steinmetz, Internal and external alignment of the shapes and angular momenta of \(\varLambda\)CDM halos. Astrophys. J. 627, 647–665 (2005). doi:10.1086/430397

    Article  ADS  Google Scholar 

  • J. Bailin, D. Kawata, B.K. Gibson, M. Steinmetz, J.F. Navarro, C.B. Brook, S.P.D. Gill, R.A. Ibata, A. Knebe, G.F. Lewis, T. Okamoto, Internal alignment of the halos of disk galaxies in cosmological hydrodynamic simulations. Astrophys. J. Lett. 627, 17–20 (2005). doi:10.1086/432157

    Article  ADS  Google Scholar 

  • J. Bailin, C. Power, P. Norberg, D. Zaritsky, B.K. Gibson, The anisotropic distribution of satellite galaxies. Mon. Not. R. Astron. Soc. 390, 1133–1156 (2008). doi:10.1111/j.1365-2966.2008.13828.x

    Article  ADS  Google Scholar 

  • J. Barnes, G. Efstathiou, Angular momentum from tidal torques. Astrophys. J. 319, 575–600 (1987). doi:10.1086/165480

    Article  ADS  Google Scholar 

  • M. Bartelmann, P. Schneider, Weak gravitational lensing. Phys. Rep. 340, 291–472 (2001). doi:10.1016/S0370-1573(00)00082-X

    ADS  MATH  Google Scholar 

  • I. Berentzen, I. Shlosman, Growing live disks within cosmologically assembling asymmetric halos: Washing out the halo prolateness. Astrophys. J. 648, 807–819 (2006). doi:10.1086/506016

    Article  ADS  Google Scholar 

  • A.A. Berlind, D.H. Weinberg, The halo occupation distribution: Toward an empirical determination of the relation between galaxies and mass. Astrophys. J. 575, 587–616 (2002). doi:10.1086/341469

    Article  ADS  Google Scholar 

  • F. Bernardeau, C. Bonvin, F. Vernizzi, Full-sky lensing shear at second order. Phys. Rev. D 81(8), 083002 (2010). doi:10.1103/PhysRevD.81.083002

    Article  ADS  Google Scholar 

  • G.M. Bernstein, M. Jarvis, Shapes and shears, stars and smears: Optimal measurements for weak lensing. Astron. J. 123, 583–618 (2002). doi:10.1086/338085

    Article  ADS  Google Scholar 

  • P. Bett, Halo shapes from weak lensing: The impact of galaxy-halo misalignment. Mon. Not. R. Astron. Soc. 420, 3303–3323 (2012). doi:10.1111/j.1365-2966.2011.20258.x

    Article  ADS  Google Scholar 

  • P.E. Bett, C.S. Frenk, Spin flips—I. Evolution of the angular momentum orientation of Milky Way-mass dark matter haloes. Mon. Not. R. Astron. Soc. 420, 3324–3333 (2012). doi:10.1111/j.1365-2966.2011.20275.x

    Article  ADS  Google Scholar 

  • P. Bett, V. Eke, C.S. Frenk, A. Jenkins, J. Helly, J. Navarro, The spin and shape of dark matter haloes in the Millennium simulation of a \(\varLambda\) cold dark matter universe. Mon. Not. R. Astron. Soc. 376, 215–232 (2007). doi:10.1111/j.1365-2966.2007.11432.x

    Article  ADS  Google Scholar 

  • P. Bett, V. Eke, C.S. Frenk, A. Jenkins, T. Okamoto, The angular momentum of cold dark matter haloes with and without baryons. Mon. Not. R. Astron. Soc. 404, 1137–1156 (2010). doi:10.1111/j.1365-2966.2010.16368.x

    ADS  Google Scholar 

  • J. Blazek, M. McQuinn, U. Seljak, Testing the tidal alignment model of galaxy intrinsic alignment. J. Cosmol. Astropart. Phys. 5, 10 (2011). doi:10.1088/1475-7516/2011/05/010

    Article  ADS  Google Scholar 

  • J. Blazek, R. Mandelbaum, U. Seljak, R. Nakajima, Separating intrinsic alignment and galaxy-galaxy lensing. J. Cosmol. Astropart. Phys. 5, 41 (2012). doi:10.1088/1475-7516/2012/05/041

    Article  ADS  Google Scholar 

  • J. Blazek, Z. Vlah, U. Seljak, Tidal alignment of galaxies. ArXiv e-prints (2015)

  • J.R. Bond, S. Cole, G. Efstathiou, N. Kaiser, Excursion set mass functions for hierarchical Gaussian fluctuations. Astrophys. J. 379, 440–460 (1991). doi:10.1086/170520

    Article  ADS  Google Scholar 

  • R.G. Bower, A.J. Benson, R. Malbon, J.C. Helly, C.S. Frenk, C.M. Baugh, S. Cole, C.G. Lacey, Breaking the hierarchy of galaxy formation. Mon. Not. R. Astron. Soc. 370, 645–655 (2006). doi:10.1111/j.1365-2966.2006.10519.x

    Article  ADS  Google Scholar 

  • M. Boylan-Kolchin, V. Springel, S.D.M. White, A. Jenkins, G. Lemson, Resolving cosmic structure formation with the Millennium-II Simulation. Mon. Not. R. Astron. Soc. 398, 1150–1164 (2009). doi:10.1111/j.1365-2966.2009.15191.x

    Article  ADS  Google Scholar 

  • S. Bridle, L. King, Dark energy constraints from cosmic shear power spectra: impact of intrinsic alignments on photometric redshift requirements. New J. Phys. 9, 444 (2007). doi:10.1088/1367-2630/9/12/444

    Article  ADS  Google Scholar 

  • M.L. Brown, A.N. Taylor, N.C. Hambly, S. Dye, Measurement of intrinsic alignments in galaxy ellipticities. Mon. Not. R. Astron. Soc. 333, 501–509 (2002). doi:10.1046/j.1365-8711.2002.05354.x

    Article  ADS  Google Scholar 

  • R. Brunino, I. Trujillo, F.R. Pearce, P.A. Thomas, The orientation of galaxy dark matter haloes around cosmic voids. Mon. Not. R. Astron. Soc. 375, 184–190 (2007). doi:10.1111/j.1365-2966.2006.11282.x

    Article  ADS  Google Scholar 

  • S.E. Bryan, S.T. Kay, A.R. Duffy, J. Schaye, C. Dalla Vecchia, C.M. Booth, The impact of baryons on the spins and shapes of dark matter haloes. Mon. Not. R. Astron. Soc. 429, 3316–3329 (2013). doi:10.1093/mnras/sts587

    Article  ADS  Google Scholar 

  • J.S. Bullock, A. Dekel, T.S. Kolatt, A.V. Kravtsov, A.A. Klypin, C. Porciani, J.R. Primack, A universal angular momentum profile for galactic halos. Astrophys. J. 555, 240–257 (2001). doi:10.1086/321477

    Article  ADS  Google Scholar 

  • G. Camelio, M. Lombardi, On the origin of intrinsic alignment in cosmic shear measurements: An analytic argument. Astron. Astrophys. 575, 113 (2015). doi:10.1051/0004-6361/201425016

    Article  ADS  Google Scholar 

  • F. Capranico, P.M. Merkel, B.M. Schäfer, Intrinsic ellipticity correlations of galaxies: Models, likelihoods and interplay with weak lensing. Mon. Not. R. Astron. Soc. 435, 194–206 (2013). doi:10.1093/mnras/stt1269

    Article  ADS  Google Scholar 

  • P. Catelan, T. Theuns, Evolution of the angular momentum of protogalaxies from tidal torques: Zel’dovich approximation. Mon. Not. R. Astron. Soc. 282, 436–454 (1996)

    Article  ADS  Google Scholar 

  • P. Catelan, M. Kamionkowski, R.D. Blandford, Intrinsic and extrinsic galaxy alignment. Mon. Not. R. Astron. Soc. 320, 7–13 (2001). doi:10.1046/j.1365-8711.2001.04105.x

    Article  ADS  Google Scholar 

  • R. Cen, Frequent spin reorientation of galaxies due to local interactions. Astrophys. J. Lett. 785, 15 (2014). doi:10.1088/2041-8205/785/1/L15

    Article  ADS  Google Scholar 

  • D.N. Chen, Y.P. Jing, K. Yoshikaw, Angular momentum distribution of hot gas and implications for disk galaxy formation. Astrophys. J. 597, 35–47 (2003). doi:10.1086/378379

    Article  ADS  Google Scholar 

  • N.E. Chisari, R. Mandelbaum, M.A. Strauss, E.M. Huff, N.A. Bahcall, Intrinsic alignments of group and cluster galaxies in photometric surveys. Mon. Not. R. Astron. Soc. 445, 726–748 (2014). doi:10.1093/mnras/stu1786

    Article  ADS  Google Scholar 

  • S. Codis, C. Pichon, J. Devriendt, A. Slyz, D. Pogosyan, Y. Dubois, T. Sousbie, Connecting the cosmic web to the spin of dark haloes: Implications for galaxy formation. Mon. Not. R. Astron. Soc. 427, 3320–3336 (2012). doi:10.1111/j.1365-2966.2012.21636.x

    Article  ADS  Google Scholar 

  • S. Codis, R. Gavazzi, Y. Dubois, C. Pichon, K. Benabed, V. Desjacques, D. Pogosyan, J. Devriendt, A. Slyz, Intrinsic alignment of simulated galaxies in the cosmic web: implications for weak lensing surveys. Mon. Not. R. Astron. Soc. 448, 3391–3404 (2015a). doi:10.1093/mnras/stv231

    Article  ADS  Google Scholar 

  • S. Codis, C. Pichon, D. Pogosyan, Spin alignments within the cosmic web: A theory of constrained tidal torques near filaments. Mon. Not. R. Astron. Soc. 452, 3369–3393 (2015b). doi:10.1093/mnras/stv1570

    Article  ADS  Google Scholar 

  • S. Cole, C. Lacey, The structure of dark matter haloes in hierarchical clustering models. Mon. Not. R. Astron. Soc. 281, 716 (1996)

    Article  ADS  Google Scholar 

  • A. Cooray, W. Hu, Second-order corrections to weak lensing by large-scale structure. Astrophys. J. 574, 19–23 (2002). doi:10.1086/340892

    Article  ADS  Google Scholar 

  • A. Cooray, M. Milosavljević, What is L? Anatomy of the galaxy luminosity function. Astrophys. J. Lett. 627, 89–92 (2005). doi:10.1086/432259

    Article  ADS  Google Scholar 

  • A. Cooray, R. Sheth, Halo models of large scale structure. Phys. Rep. 372, 1–129 (2002). doi:10.1016/S0370-1573(02)00276-4

    ADS  MATH  Google Scholar 

  • J. Coupon, S. Arnouts, L. van Waerbeke, T. Moutard, O. Ilbert, E. van Uitert, T. Erben, B. Garilli, L. Guzzo, C. Heymans, H. Hildebrandt, H. Hoekstra, M. Kilbinger, T. Kitching, Y. Mellier, L. Miller, M. Scodeggio, C. Bonnett, E. Branchini, I. Davidzon, G. De Lucia, A. Fritz, L. Fu, P. Hudelot, M.J. Hudson, K. Kuijken, A. Leauthaud, O. Le Fèvre, H.J. McCracken, L. Moscardini, B.T.P. Rowe, T. Schrabback, E. Semboloni, M. Velander, The galaxy-halo connection from a joint lensing, clustering and abundance analysis in the CFHTLenS/VIPERS field. Mon. Not. R. Astron. Soc. 449, 1352–1379 (2015). doi:10.1093/mnras/stv276

    Article  ADS  Google Scholar 

  • R.A. Crain, J. Schaye, R.G. Bower, M. Furlong, M. Schaller, T. Theuns, C. Dalla Vecchia, C.S. Frenk, I.G. McCarthy, J.C. Helly, A. Jenkins, Y.M. Rosas-Guevara, S.D.M. White, J.W. Trayford, The EAGLE simulations of galaxy formation: Calibration of subgrid physics and model variations. Mon. Not. R. Astron. Soc. 450, 1937–1961 (2015). doi:10.1093/mnras/stv725

    Article  ADS  Google Scholar 

  • R.G. Crittenden, P. Natarajan, U.-L. Pen, T. Theuns, Spin-induced galaxy alignments and their implications for weak-lensing measurements. Astrophys. J. 559, 552–571 (2001). doi:10.1086/322370

    Article  ADS  Google Scholar 

  • R.G. Crittenden, P. Natarajan, U.-L. Pen, T. Theuns, Discriminating weak lensing from intrinsic spin correlations using the curl-gradient decomposition. Astrophys. J. 568, 20–27 (2002). doi:10.1086/338838

    Article  ADS  Google Scholar 

  • R.A.C. Croft, C.A. Metzler, Weak-lensing surveys and the intrinsic correlation of galaxy ellipticities. Astrophys. J. 545, 561–571 (2000). doi:10.1086/317856

    Article  ADS  Google Scholar 

  • A.J. Cuesta, J.E. Betancort-Rijo, S. Gottlöber, S.G. Patiri, G. Yepes, F. Prada, Spin alignment of dark matter haloes in the shells of the largest voids. Mon. Not. R. Astron. Soc. 385, 867–874 (2008). doi:10.1111/j.1365-2966.2008.12879.x

    Article  ADS  Google Scholar 

  • M. Danovich, A. Dekel, O. Hahn, D. Ceverino, J. Primack, Four phases of angular-momentum buildup in high-z galaxies: From cosmic-web streams through an extended ring to disc and bulge. Mon. Not. R. Astron. Soc. 449, 2087–2111 (2015). doi:10.1093/mnras/stv270

    Article  ADS  Google Scholar 

  • A.J. Davis, P. Natarajan, Angular momentum and clustering properties of early dark matter haloes. Mon. Not. R. Astron. Soc. 393, 1498–1502 (2009). doi:10.1111/j.1365-2966.2008.14267.x

    Article  ADS  Google Scholar 

  • M. Davis, G. Efstathiou, C.S. Frenk, S.D.M. White, The evolution of large-scale structure in a universe dominated by cold dark matter. Astrophys. J. 292, 371–394 (1985). doi:10.1086/163168

    Article  ADS  Google Scholar 

  • A.J. Deason, I.G. McCarthy, A.S. Font, N.W. Evans, C.S. Frenk, V. Belokurov, N.I. Libeskind, R.A. Crain, T. Theuns, Mismatch and misalignment: Dark haloes and satellites of disc galaxies. Mon. Not. R. Astron. Soc. 415, 2607–2625 (2011). doi:10.1111/j.1365-2966.2011.18884.x

    Article  ADS  Google Scholar 

  • V.P. Debattista, R. Roškar, M. Valluri, T. Quinn, B. Moore, J. Wadsley, What’s up in the Milky Way? The orientation of the disc relative to the triaxial halo. Mon. Not. R. Astron. Soc. 434, 2971–2981 (2013). doi:10.1093/mnras/stt1217

    Article  ADS  Google Scholar 

  • V.P. Debattista, F.C. van den Bosch, R. Roskar, T. Quinn, B. Moore, D.R. Cole, Internal alignments of red versus blue discs in dark matter halos. ArXiv e-prints (2015)

  • A. Dekel, Y. Birnboim, G. Engel, J. Freundlich, T. Goerdt, M. Mumcuoglu, E. Neistein, C. Pichon, R. Teyssier, E. Zinger, Cold streams in early massive hot haloes as the main mode of galaxy formation. Nature 457, 451–454 (2009). doi:10.1038/nature07648

    Article  ADS  Google Scholar 

  • S. Dodelson, Modern Cosmology 2003

    Google Scholar 

  • X.C. Dong, W.P. Lin, X. Kang, Y. Ocean Wang, A.A. Dutton, A.V. Macciò, The distribution of satellites around central galaxies in a cosmological hydrodynamical simulation. Astrophys. J. Lett. 791, 33 (2014). doi:10.1088/2041-8205/791/2/L33

    Article  ADS  Google Scholar 

  • J. Dubinski, R.G. Carlberg, The structure of cold dark matter halos. Astrophys. J. 378, 496–503 (1991). doi:10.1086/170451

    Article  ADS  Google Scholar 

  • Y. Dubois, C. Pichon, C. Welker, D. Le Borgne, J. Devriendt, C. Laigle, S. Codis, D. Pogosyan, S. Arnouts, K. Benabed, E. Bertin, J. Blaizot, F. Bouchet, J.-F. Cardoso, S. Colombi, V. de Lapparent, V. Desjacques, R. Gavazzi, S. Kassin, T. Kimm, H. McCracken, B. Milliard, S. Peirani, S. Prunet, S. Rouberol, J. Silk, A. Slyz, T. Sousbie, R. Teyssier, L. Tresse, M. Treyer, D. Vibert, M. Volonteri, Dancing in the dark: Galactic properties trace spin swings along the cosmic web. Mon. Not. R. Astron. Soc. 444, 1453–1468 (2014). doi:10.1093/mnras/stu1227

    Article  ADS  Google Scholar 

  • A.A. Dutton, A.V. Macciò, Cold dark matter haloes in the Planck era: Evolution of structural parameters for Einasto and NFW profiles. Mon. Not. R. Astron. Soc. 441, 3359–3374 (2014). doi:10.1093/mnras/stu742

    Article  ADS  Google Scholar 

  • A. Faltenbacher, S. Gottlöber, M. Kerscher, V. Müller, Correlations in the orientations of galaxy clusters. Astron. Astrophys. 395, 1–9 (2002). doi:10.1051/0004-6361:20021263

    Article  ADS  Google Scholar 

  • A. Faltenbacher, Y.P. Jing, C. Li, S. Mao, H.J. Mo, A. Pasquali, F.C. van den Bosch, Spatial and kinematic alignments between central and satellite halos. Astrophys. J. 675, 146–155 (2008). doi:10.1086/525243

    Article  ADS  Google Scholar 

  • A. Faltenbacher, C. Li, S.D.M. White, Y.-P. Jing, Shu-DeMao, J. Wang, Alignment between galaxies and large-scale structure. Res. Astron. Astrophys. 9, 41–58 (2009). doi:10.1088/1674-4527/9/1/004

    Article  ADS  Google Scholar 

  • C. Fedeli, The clustering of baryonic matter. I: A halo-model approach. J. Cosmol. Astropart. Phys. 4, 28 (2014). doi:10.1088/1475-7516/2014/04/028

    MathSciNet  ADS  Google Scholar 

  • C. Fedeli, E. Semboloni, M. Velliscig, M. Van Daalen, J. Schaye, H. Hoekstra, The clustering of baryonic matter. II: Halo model and hydrodynamic simulations. J. Cosmol. Astropart. Phys. 8, 28 (2014). doi:10.1088/1475-7516/2014/08/028

    ADS  Google Scholar 

  • J.E. Forero-Romero, S. Contreras, N. Padilla, Cosmic web alignments with the shape, angular momentum and peculiar velocities of dark matter haloes. Mon. Not. R. Astron. Soc. 443, 1090–1102 (2014). doi:10.1093/mnras/stu1150

    Article  ADS  Google Scholar 

  • C.S. Frenk, S.D.M. White, M. Davis, G. Efstathiou, The formation of dark halos in a universe dominated by cold dark matter. Astrophys. J. 327, 507–525 (1988). doi:10.1086/166213

    Article  ADS  Google Scholar 

  • L. Gao, S.D.M. White, Assembly bias in the clustering of dark matter haloes. Mon. Not. R. Astron. Soc. 377, 5–9 (2007). doi:10.1111/j.1745-3933.2007.00292.x

    Article  ADS  Google Scholar 

  • A. Giahi, B.M. Schäfer, Evolution of intrinsic ellipticity correlations due to peculiar motion. Mon. Not. R. Astron. Soc. 428, 1312–1320 (2013). doi:10.1093/mnras/sts110

    Article  ADS  Google Scholar 

  • A. Giahi-Saravani, B.M. Schäfer, Weak gravitational lensing of intrinsically aligned galaxies. Mon. Not. R. Astron. Soc. 437, 1847–1857 (2014). doi:10.1093/mnras/stt2016

    Article  ADS  Google Scholar 

  • C. Giocoli, M. Bartelmann, R.K. Sheth, M. Cacciato, Halo model description of the non-linear dark matter power spectrum at \(\mbox{k} \gg 1~\mbox{Mpc}^{-1}\). Mon. Not. R. Astron. Soc. 408, 300–313 (2010). doi:10.1111/j.1365-2966.2010.17108.x

    Article  ADS  Google Scholar 

  • M. Gustafsson, M. Fairbairn, J. Sommer-Larsen, Baryonic pinching of galactic dark matter halos. Phys. Rev. D 74(12), 123522 (2006). doi:10.1103/PhysRevD.74.123522

    Article  ADS  Google Scholar 

  • O. Hahn, C. Porciani, C.M. Carollo, A. Dekel, Properties of dark matter haloes in clusters, filaments, sheets and voids. Mon. Not. R. Astron. Soc. 375, 489–499 (2007a). doi:10.1111/j.1365-2966.2006.11318.x

    Article  ADS  Google Scholar 

  • O. Hahn, C.M. Carollo, C. Porciani, A. Dekel, The evolution of dark matter halo properties in clusters, filaments, sheets and voids. Mon. Not. R. Astron. Soc. 381, 41–51 (2007b). doi:10.1111/j.1365-2966.2007.12249.x

    Article  ADS  Google Scholar 

  • O. Hahn, R. Teyssier, C.M. Carollo, The large-scale orientations of disc galaxies. Mon. Not. R. Astron. Soc. 405, 274–290 (2010). doi:10.1111/j.1365-2966.2010.16494.x

    ADS  Google Scholar 

  • A. Hall, A. Taylor, Intrinsic alignments in the cross-correlation of cosmic shear and cosmic microwave background weak lensing. Mon. Not. R. Astron. Soc. 443, 119–123 (2014). doi:10.1093/mnrasl/slu094

    Article  ADS  Google Scholar 

  • S. Hatton, S. Ninin, Angular momentum alignment of dark matter haloes. Mon. Not. R. Astron. Soc. 322, 576–584 (2001). doi:10.1046/j.1365-8711.2001.04136.x

    Article  ADS  Google Scholar 

  • A. Heavens, J. Peacock, Tidal torques and local density maxima. Mon. Not. R. Astron. Soc. 232, 339–360 (1988)

    Article  ADS  Google Scholar 

  • A. Heavens, A. Refregier, C. Heymans, Intrinsic correlation of galaxy shapes: Implications for weak lensing measurements. Mon. Not. R. Astron. Soc. 319, 649–656 (2000). doi:10.1046/j.1365-8711.2000.03907.x

    Article  ADS  Google Scholar 

  • L. Hernquist, N. Katz, TREESPH—A unification of SPH with the hierarchical tree method. Astrophys. J. Suppl. Ser. 70, 419–446 (1989). doi:10.1086/191344

    Article  ADS  Google Scholar 

  • C. Heymans, M. Brown, A. Heavens, K. Meisenheimer, A. Taylor, C. Wolf, Weak lensing with COMBO-17: Estimation and removal of intrinsic alignments. Mon. Not. R. Astron. Soc. 347, 895–908 (2004). doi:10.1111/j.1365-2966.2004.07264.x

    Article  ADS  Google Scholar 

  • C. Heymans, M. White, A. Heavens, C. Vale, L. van Waerbeke, Potential sources of contamination to weak lensing measurements: constraints from N-body simulations. Mon. Not. R. Astron. Soc. 371, 750–760 (2006). doi:10.1111/j.1365-2966.2006.10705.x

    Article  ADS  Google Scholar 

  • C. Heymans, E. Grocutt, A. Heavens, M. Kilbinger, T.D. Kitching, F. Simpson, J. Benjamin, T. Erben, H. Hildebrandt, H. Hoekstra, Y. Mellier, L. Miller, L. Van Waerbeke, M.L. Brown et al., CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments. Mon. Not. R. Astron. Soc. 432, 2433–2453 (2013). doi:10.1093/mnras/stt601

    Article  ADS  Google Scholar 

  • C.M. Hirata, U. Seljak, Intrinsic alignment-lensing interference as a contaminant of cosmic shear. Phys. Rev. D 70(6), 063526 (2004). doi:10.1103/PhysRevD.70.063526

    Article  ADS  Google Scholar 

  • C.M. Hirata, U. Seljak, Intrinsic alignment-lensing interference as a contaminant of cosmic shear. ArXiv Astrophysics e-prints (2010)

  • C.M. Hirata, R. Mandelbaum, U. Seljak, J. Guzik, N. Padmanabhan, C. Blake, J. Brinkmann, T. Budávari, A. Connolly, I. Csabai, R. Scranton, A.S. Szalay, Galaxy-galaxy weak lensing in the Sloan Digital Sky Survey: Intrinsic alignments and shear calibration errors. Mon. Not. R. Astron. Soc. 353, 529–549 (2004). doi:10.1111/j.1365-2966.2004.08090.x

    Article  ADS  Google Scholar 

  • R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles 1981

    MATH  Google Scholar 

  • H. Hoekstra, H.K.C. Yee, M.D. Gladders, Properties of galaxy dark matter halos from weak lensing. Astrophys. J. 606, 67–77 (2004). doi:10.1086/382726

    Article  ADS  Google Scholar 

  • P.F. Hopkins, N.A. Bahcall, P. Bode, Cluster alignments and ellipticities in \(\varLambda\)CDM cosmology. Astrophys. J. 618, 1–15 (2005). doi:10.1086/425993

    Article  ADS  Google Scholar 

  • Y.P. Jing, Intrinsic correlation of halo ellipticity and its implications for large-scale weak lensing surveys. Mon. Not. R. Astron. Soc. 335, 89–93 (2002). doi:10.1046/j.1365-8711.2002.05899.x

    Article  ADS  Google Scholar 

  • Y.P. Jing, Y. Suto, Triaxial modeling of halo density profiles with high-resolution N-body simulations. Astrophys. J. 574, 538–553 (2002). doi:10.1086/341065

    Article  ADS  Google Scholar 

  • B. Joachimi, R. Mandelbaum, F.B. Abdalla, S.L. Bridle, Constraints on intrinsic alignment contamination of weak lensing surveys using the MegaZ-LRG sample. Astron. Astrophys. 527, 26 (2011). doi:10.1051/0004-6361/201015621

    Article  ADS  Google Scholar 

  • B. Joachimi, E. Semboloni, P.E. Bett, J. Hartlap, S. Hilbert, H. Hoekstra, P. Schneider, T. Schrabback, Intrinsic galaxy shapes and alignments—I. Measuring and modelling COSMOS intrinsic galaxy ellipticities. Mon. Not. R. Astron. Soc. 431, 477–492 (2013a). doi:10.1093/mnras/stt172

    Article  ADS  Google Scholar 

  • B. Joachimi, E. Semboloni, S. Hilbert, P.E. Bett, J. Hartlap, H. Hoekstra, P. Schneider, Intrinsic galaxy shapes and alignments—II. Modelling the intrinsic alignment contamination of weak lensing surveys. Mon. Not. R. Astron. Soc. 436, 819–838 (2013b). doi:10.1093/mnras/stt1618

    Article  ADS  Google Scholar 

  • B. Joachimi, M. Cacciato, T.D. Kitching, A. Leonard, R. Mandelbaum, B.M. Schäfer, C. Sifón, H. Hoekstra, A. Kiessling, D. Kirk, A. Rassat, Galaxy alignments: An overview. Space Sci. Rev. (2015). doi:10.1007/s11214-015-0177-4

    Google Scholar 

  • N. Kaiser, Clustering in real space and in redshift space. Mon. Not. R. Astron. Soc. 227, 1–21 (1987)

    Article  ADS  Google Scholar 

  • M. Kamionkowski, A. Kosowsky, A. Stebbins, Statistics of cosmic microwave background polarization. Phys. Rev. D 55, 7368–7388 (1997). doi:10.1103/PhysRevD.55.7368

    Article  ADS  Google Scholar 

  • X. Kang, S. Mao, L. Gao, Y.P. Jing, Are great disks defined by satellite galaxies in Milky-Way type halos rare in \(\varLambda\)CDM? Astron. Astrophys. 437, 383–388 (2005). doi:10.1051/0004-6361:20052675

    Article  ADS  Google Scholar 

  • X. Kang, F.C. van den Bosch, X. Yang, S. Mao, H.J. Mo, C. Li, Y.P. Jing, The alignment between satellites and central galaxies: theory versus observations. Mon. Not. R. Astron. Soc. 378, 1531–1542 (2007). doi:10.1111/j.1365-2966.2007.11902.x

    Article  ADS  Google Scholar 

  • S.F. Kasun, A.E. Evrard, Shapes and alignments of galaxy cluster halos. Astrophys. J. 629, 781–790 (2005). doi:10.1086/430811

    Article  ADS  Google Scholar 

  • S. Kazantzidis, A.V. Kravtsov, A.R. Zentner, B. Allgood, D. Nagai, B. Moore, The effect of gas cooling on the shapes of dark matter halos. Astrophys. J. Lett. 611, 73–76 (2004). doi:10.1086/423992

    Article  ADS  Google Scholar 

  • N. Khandai, T. Di Matteo, R. Croft, S. Wilkins, Y. Feng, E. Tucker, C. DeGraf, M.-S. Liu, The MassiveBlack-II simulation: The evolution of haloes and galaxies to \(\mathrm{z}\sim 0\). Mon. Not. R. Astron. Soc. 450, 1349–1374 (2015). doi:10.1093/mnras/stv627

    Article  ADS  Google Scholar 

  • D. Kirk, I. Laszlo, S. Bridle, R. Bean, Optimizing cosmic shear surveys to measure modifications to gravity on cosmic scales. Mon. Not. R. Astron. Soc. 430, 197–208 (2013). doi:10.1093/mnras/sts571

    Article  ADS  Google Scholar 

  • D. Kirk, M.L. Brown, H. Hoekstra, B. Joachimi, T.D. Kitching, R. Mandelbaum, C. Sifón, M. Cacciato, A. Choi, A. Kiessling, A. Leonard, A. Rassat, B.M. Schäfer, Galaxy alignments: Observations and impact on cosmology. ArXiv e-prints (2015)

  • A. Klypin, J. Holtzman, Particle-Mesh code for cosmological simulations. ArXiv Astrophysics e-prints (1997)

  • A. Knebe, S.P.D. Gill, B.K. Gibson, G.F. Lewis, R.A. Ibata, M.A. Dopita, Anisotropy in the distribution of satellite galaxy orbits. Astrophys. J. 603, 7–11 (2004). doi:10.1086/381306

    Article  ADS  Google Scholar 

  • A. Knebe, N. Draganova, C. Power, G. Yepes, Y. Hoffman, S. Gottlöber, B.K. Gibson, On the relation between the radial alignment of dark matter subhaloes and host mass in cosmological simulations. Mon. Not. R. Astron. Soc. 386, 52–56 (2008a). doi:10.1111/j.1745-3933.2008.00459.x

    Article  ADS  Google Scholar 

  • A. Knebe, H. Yahagi, H. Kase, G. Lewis, B.K. Gibson, The radial alignment of dark matter subhaloes: From simulations to observations. Mon. Not. R. Astron. Soc. 388, 34–38 (2008b). doi:10.1111/j.1745-3933.2008.00495.x

    Article  ADS  Google Scholar 

  • A. Knebe, N.I. Libeskind, S.R. Knollmann, G. Yepes, S. Gottlöber, Y. Hoffman, The impact of baryonic physics on the shape and radial alignment of substructures in cosmological dark matter haloes. Mon. Not. R. Astron. Soc. 405, 1119–1128 (2010). doi:10.1111/j.1365-2966.2010.16514.x

    ADS  Google Scholar 

  • A. Knebe, S.R. Knollmann, S.I. Muldrew, F.R. Pearce, M.A. Aragon-Calvo, Y. Ascasibar, P.S. Behroozi, D. Ceverino, S. Colombi, J. Diemand, K. Dolag, B.L. Falck, P. Fasel, J. Gardner, S. Gottlöber, C.-H. Hsu, F. Iannuzzi, A. Klypin, Z. Lukić, M. Maciejewski, C. McBride, M.C. Neyrinck, S. Planelles, D. Potter, V. Quilis, Y. Rasera, J.I. Read, P.M. Ricker, F. Roy, V. Springel, J. Stadel, G. Stinson, P.M. Sutter, V. Turchaninov, D. Tweed, G. Yepes, M. Zemp, Haloes gone MAD: The halo-finder comparison project. Mon. Not. R. Astron. Soc. 415, 2293–2318 (2011). doi:10.1111/j.1365-2966.2011.18858.x

    Article  ADS  Google Scholar 

  • E. Krause, C.M. Hirata, Weak lensing power spectra for precision cosmology. Multiple-deflection, reduced shear, and lensing bias corrections. Astron. Astrophys. 523, 28 (2010). doi:10.1051/0004-6361/200913524

    Article  ADS  Google Scholar 

  • M. Kuhlen, J. Diemand, P. Madau, The shapes, orientation, and alignment of galactic dark matter subhalos. Astrophys. J. 671, 1135–1146 (2007). doi:10.1086/522878

    Article  ADS  Google Scholar 

  • C. Lacey, S. Cole, Merger rates in hierarchical models of galaxy formation—Part two—Comparison with N-body simulations. Mon. Not. R. Astron. Soc. 271, 676 (1994)

    Article  ADS  Google Scholar 

  • R. Laureijs, J. Amiaux, S. Arduini, J.-. Auguères, J. Brinchmann, R. Cole, M. Cropper, C. Dabin, L. Duvet, A. Ealet et al., Euclid definition study report. ArXiv e-prints (2011)

  • A.M.C. Le Brun, I.G. McCarthy, J. Schaye, T.J. Ponman, Towards a realistic population of simulated galaxy groups and clusters. Mon. Not. R. Astron. Soc. 441, 1270–1290 (2014). doi:10.1093/mnras/stu608

    Article  ADS  Google Scholar 

  • J. Lee, On the intrinsic alignments of the late-type spiral galaxies from the Sloan digital sky survey data release 7. Astrophys. J. 732, 99 (2011). doi:10.1088/0004-637X/732/2/99

    Article  ADS  Google Scholar 

  • J. Lee, P. Erdogdu, The alignments of the galaxy spins with the real-space tidal field reconstructed from the 2MASS redshift survey. Astrophys. J. 671, 1248–1255 (2007). doi:10.1086/523351

    Article  ADS  Google Scholar 

  • J. Lee, U.-L. Pen, Cosmic shear from galaxy spins. Astrophys. J. Lett. 532, 5–8 (2000). doi:10.1086/312556

    Article  ADS  Google Scholar 

  • J. Lee, X. Kang, Y.P. Jing, The intrinsic alignment of dark halo substructures. Astrophys. J. Lett. 629, 5–8 (2005). doi:10.1086/444496

    Article  ADS  Google Scholar 

  • N.I. Libeskind, S. Cole, C.S. Frenk, T. Okamoto, A. Jenkins, Satellite systems around galaxies in hydrodynamic simulations. Mon. Not. R. Astron. Soc. 374, 16–28 (2007). doi:10.1111/j.1365-2966.2006.11205.x

    Article  ADS  Google Scholar 

  • N.I. Libeskind, C.S. Frenk, S. Cole, A. Jenkins, J.C. Helly, How common is the Milky Way-satellite system alignment? Mon. Not. R. Astron. Soc. 399, 550–558 (2009). doi:10.1111/j.1365-2966.2009.15315.x

    Article  ADS  Google Scholar 

  • N.I. Libeskind, Y. Hoffman, A. Knebe, M. Steinmetz, S. Gottlöber, O. Metuki, G. Yepes, The cosmic web and the orientation of angular momenta. Mon. Not. R. Astron. Soc. 421, 137–141 (2012). doi:10.1111/j.1745-3933.2012.01222.x

    Article  ADS  Google Scholar 

  • N.I. Libeskind, Y. Hoffman, J. Forero-Romero, S. Gottlöber, A. Knebe, M. Steinmetz, A. Klypin, The velocity shear tensor: Tracer of halo alignment. Mon. Not. R. Astron. Soc. 428, 2489–2499 (2013). doi:10.1093/mnras/sts216

    Article  ADS  Google Scholar 

  • LSST Science Collaboration, P.A. Abell, J. Allison, S.F. Anderson, J.R. Andrew, J.R.P. Angel, L. Armus, D. Arnett, S.J. Asztalos, T.S. Axelrod et al., LSST Science Book, Version 2.0. ArXiv e-prints (2009)

  • N. MacCrann, J. Zuntz, S. Bridle, B. Jain, M.R. Becker, Cosmic discordance: Are Planck CMB and CFHTLenS weak lensing measurements out of tune? Mon. Not. R. Astron. Soc. 451, 2877–2888 (2015). doi:10.1093/mnras/stv1154

    Article  ADS  Google Scholar 

  • A.H. Maller, A. Dekel, Towards a resolution of the galactic spin crisis: Mergers, feedback and spin segregation. Mon. Not. R. Astron. Soc. 335, 487–498 (2002). doi:10.1046/j.1365-8711.2002.05646.x

    Article  ADS  Google Scholar 

  • A.H. Maller, A. Dekel, R. Somerville, Modelling angular-momentum history in dark-matter haloes. Mon. Not. R. Astron. Soc. 329, 423–430 (2002). doi:10.1046/j.1365-8711.2002.04983.x

    Article  ADS  Google Scholar 

  • R. Mandelbaum, C.M. Hirata, T. Broderick, U. Seljak, J. Brinkmann, Ellipticity of dark matter haloes with galaxy-galaxy weak lensing. Mon. Not. R. Astron. Soc. 370, 1008–1024 (2006a). doi:10.1111/j.1365-2966.2006.10539.x

    Article  ADS  Google Scholar 

  • R. Mandelbaum, C.M. Hirata, M. Ishak, U. Seljak, J. Brinkmann, Detection of large-scale intrinsic ellipticity-density correlation from the Sloan Digital Sky Survey and implications for weak lensing surveys. Mon. Not. R. Astron. Soc. 367, 611–626 (2006b). doi:10.1111/j.1365-2966.2005.09946.x

    Article  ADS  Google Scholar 

  • R. Mandelbaum, C. Blake, S. Bridle, F.B. Abdalla, S. Brough, M. Colless, W. Couch, S. Croom, T. Davis, M.J. Drinkwater, K. Forster, K. Glazebrook et al., The WiggleZ Dark Energy Survey: Direct constraints on blue galaxy intrinsic alignments at intermediate redshifts. Mon. Not. R. Astron. Soc. 410, 844–859 (2011). doi:10.1111/j.1365-2966.2010.17485.x

    Article  ADS  Google Scholar 

  • I.G. McCarthy, A.M.C. Le Brun, J. Schaye, G.P. Holder, The thermal Sunyaev-Zel’dovich effect power spectrum in light of Planck. Mon. Not. R. Astron. Soc. 440, 3645–3657 (2014). doi:10.1093/mnras/stu543

    Article  ADS  Google Scholar 

  • P.M. Merkel, B.M. Schäfer, Intrinsic alignments and 3d weak gravitational lensing. Mon. Not. R. Astron. Soc. 434, 1808–1820 (2013). doi:10.1093/mnras/stt1151

    Article  ADS  Google Scholar 

  • M. Metz, P. Kroupa, N.I. Libeskind, The orbital poles of milky way satellite galaxies: A rotationally supported disk of satellites. Astrophys. J. 680, 287–294 (2008). doi:10.1086/587833

    Article  ADS  Google Scholar 

  • J. Miralda-Escude, The correlation function of galaxy ellipticities produced by gravitational lensing. Astrophys. J. 380, 1–8 (1991). doi:10.1086/170555

    Article  ADS  Google Scholar 

  • H. Mo, F.C. van den Bosch, S. White, Galaxy Formation and Evolution 2010

    Book  Google Scholar 

  • J.J. Monaghan, J.C. Lattanzio, A refined particle method for astrophysical problems. Astron. Astrophys. 149, 135–143 (1985)

    ADS  MATH  Google Scholar 

  • P. Natarajan, A. Refregier, Two-dimensional galaxy-galaxy lensing: A direct measure of the flattening and alignment of light and mass in galaxies. Astrophys. J. Lett. 538, 113–116 (2000). doi:10.1086/312808

    Article  ADS  Google Scholar 

  • J.F. Navarro, W. Benz, Dynamics of cooling gas in galactic dark halos. Astrophys. J. 380, 320–329 (1991). doi:10.1086/170590

    Article  ADS  Google Scholar 

  • J.F. Navarro, C.S. Frenk, S.D.M. White, The structure of cold dark matter halos. Astrophys. J. 462, 563 (1996). doi:10.1086/177173

    Article  ADS  Google Scholar 

  • J.F. Navarro, C.S. Frenk, S.D.M. White, A universal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997)

    Article  ADS  Google Scholar 

  • J.F. Navarro, M.G. Abadi, M. Steinmetz, Tidal torques and the orientation of nearby disk galaxies. Astrophys. J. Lett. 613, 41–44 (2004). doi:10.1086/424902

    Article  ADS  Google Scholar 

  • Y. Ocean Wang, W.P. Lin, X. Kang, A. Dutton, Y. Yu, A.V. Macciò, Satellite alignment. I. Distribution of substructures and their dependence on assembly history from N-body simulations. Astrophys. J. 786, 8 (2014). doi:10.1088/0004-637X/786/1/8

    Article  ADS  Google Scholar 

  • T. Okamoto, V.R. Eke, C.S. Frenk, A. Jenkins, Effects of feedback on the morphology of galaxy discs. Mon. Not. R. Astron. Soc. 363, 1299–1314 (2005). doi:10.1111/j.1365-2966.2005.09525.x

    Article  ADS  Google Scholar 

  • T. Okumura, Y.P. Jing, The gravitational shear-intrinsic ellipticity correlation functions of luminous red galaxies in observation and in the \(\varLambda\)CDM model. Astrophys. J. Lett. 694, 83–86 (2009). doi:10.1088/0004-637X/694/1/L83

    Article  ADS  Google Scholar 

  • T. Okumura, Y.P. Jing, C. Li, Intrinsic ellipticity correlation of SDSS luminous red galaxies and misalignment with their host dark matter halos. Astrophys. J. 694, 214–221 (2009). doi:10.1088/0004-637X/694/1/214

    Article  ADS  Google Scholar 

  • L.I. Onuora, P.A. Thomas, The alignment of clusters using large-scale simulations. Mon. Not. R. Astron. Soc. 319, 614–618 (2000). doi:10.1046/j.1365-8711.2000.03910.x

    Article  ADS  Google Scholar 

  • L.C. Parker, H. Hoekstra, M.J. Hudson, L. van Waerbeke, Y. Mellier, The masses and shapes of dark matter halos from galaxy-galaxy lensing in the CFHT legacy survey. Astrophys. J. 669, 21–31 (2007). doi:10.1086/521541

    Article  ADS  Google Scholar 

  • S.G. Patiri, A.J. Cuesta, F. Prada, J. Betancort-Rijo, A. Klypin, The alignment of dark matter halos with the cosmic web. Astrophys. J. Lett. 652, 75–78 (2006). doi:10.1086/510330

    Article  ADS  Google Scholar 

  • D.J. Paz, D.G. Lambas, N. Padilla, M. Merchán, Shapes of clusters and groups of galaxies: Comparison of model predictions with observations. Mon. Not. R. Astron. Soc. 366, 1503–1510 (2006). doi:10.1111/j.1365-2966.2005.09934.x

    Article  ADS  Google Scholar 

  • D.J. Paz, F. Stasyszyn, N.D. Padilla, Angular momentum-large-scale structure alignments in \(\varLambda\)CDM models and the SDSS. Mon. Not. R. Astron. Soc. 389, 1127–1136 (2008). doi:10.1111/j.1365-2966.2008.13655.x

    Article  ADS  Google Scholar 

  • D.J. Paz, M.A. Sgró, M. Merchán, N. Padilla, Alignments of galaxy group shapes with large-scale structure. Mon. Not. R. Astron. Soc. 414, 2029–2039 (2011). doi:10.1111/j.1365-2966.2011.18518.x

    Article  ADS  Google Scholar 

  • P.J.E. Peebles, Origin of the angular momentum of galaxies. Astrophys. J. 155, 393 (1969). doi:10.1086/149876

    Article  ADS  Google Scholar 

  • M.J. Pereira, G.L. Bryan, Tidal torquing of elliptical galaxies in cluster environments. Astrophys. J. 721, 939–955 (2010). doi:10.1088/0004-637X/721/2/939

    Article  ADS  Google Scholar 

  • M.J. Pereira, G.L. Bryan, S.P.D. Gill, Radial alignment in simulated clusters. Astrophys. J. 672, 8–25833 (2008). doi:10.1086/523830

    Article  Google Scholar 

  • C. Porciani, A. Dekel, Y. Hoffman, Testing tidal-torque theory—I. Spin amplitude and direction. Mon. Not. R. Astron. Soc. 332, 325–338 (2002). doi:10.1046/j.1365-8711.2002.05305.x

    Article  ADS  Google Scholar 

  • W.H. Press, P. Schechter, Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. Astrophys. J. 187, 425–438 (1974). doi:10.1086/152650

    Article  ADS  Google Scholar 

  • C. Ragone-Figueroa, M. Plionis, Environmental influences on the morphology and dynamics of group-sized haloes. Mon. Not. R. Astron. Soc. 377, 1785–1794 (2007). doi:10.1111/j.1365-2966.2007.11757.x

    Article  ADS  Google Scholar 

  • E. Romano-Díaz, I. Shlosman, C. Heller, Y. Hoffman, Dissecting galaxy formation. I. Comparison between pure dark matter and baryonic models. Astrophys. J. 702, 1250–1267 (2009). doi:10.1088/0004-637X/702/2/1250

    Article  ADS  Google Scholar 

  • C. Scannapieco, S.D.M. White, V. Springel, P.B. Tissera, The formation and survival of discs in a \(\varLambda\)CDM universe. Mon. Not. R. Astron. Soc. 396, 696–708 (2009). doi:10.1111/j.1365-2966.2009.14764.x

    Article  ADS  Google Scholar 

  • B.M. Schäfer, Galactic angular momenta and angular momentum correlations in the cosmological large-scale structure. Int. J. Mod. Phys. D 18, 173–222 (2009). doi:10.1142/S0218271809014388

    Article  ADS  MATH  Google Scholar 

  • B.M. Schäfer, P.M. Merkel, Galactic angular momenta and angular momentum couplings in the large-scale structure. Mon. Not. R. Astron. Soc. 421, 2751–2762 (2012). doi:10.1111/j.1365-2966.2011.20224.x

    Article  ADS  Google Scholar 

  • J. Schaye, C. Dalla Vecchia, C.M. Booth, R.P.C. Wiersma, T. Theuns, M.R. Haas, S. Bertone, A.R. Duffy, I.G. McCarthy, F. van de Voort, The physics driving the cosmic star formation history. Mon. Not. R. Astron. Soc. 402, 1536–1560 (2010). doi:10.1111/j.1365-2966.2009.16029.x

    Article  ADS  Google Scholar 

  • J. Schaye, R.A. Crain, R.G. Bower, M. Furlong, M. Schaller, T. Theuns, C. Dalla Vecchia, C.S. Frenk, I.G. McCarthy, J.C. Helly, A. Jenkins, Y.M. Rosas-Guevara, S.D.M. White, M. Baes, C.M. Booth, P. Camps, J.F. Navarro, Y. Qu, A. Rahmati, T. Sawala, P.A. Thomas, J. Trayford, The EAGLE project: Simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 446, 521–554 (2015). doi:10.1093/mnras/stu2058

    Article  ADS  Google Scholar 

  • M.D. Schneider, S. Bridle, A halo model for intrinsic alignments of galaxy ellipticities. Mon. Not. R. Astron. Soc. 402, 2127–2139 (2010). doi:10.1111/j.1365-2966.2009.15956.x

    Article  ADS  Google Scholar 

  • M.D. Schneider, C.S. Frenk, S. Cole, The shapes and alignments of dark matter halos. J. Cosmol. Astropart. Phys. 5, 30 (2012). doi:10.1088/1475-7516/2012/05/030

    Article  ADS  Google Scholar 

  • T. Schrabback, S. Hilbert, H. Hoekstra, P. Simon, E. van Uitert, T. Erben, C. Heymans, H. Hildebrandt, T.D. Kitching, Y. Mellier, L. Miller, L. Van Waerbeke, P. Bett, J. Coupon, L. Fu, M.J. Hudson, B. Joachimi, M. Kilbinger, K. Kuijken, CFHTLenS: Weak lensing constraints on the ellipticity of galaxy-scale matter haloes and the galaxy-halo misalignment. ArXiv e-prints (2015)

  • U. Seljak, Measuring polarization in the cosmic microwave background. Astrophys. J. 482, 6–16 (1997)

    Article  ADS  Google Scholar 

  • U. Seljak, Analytic model for galaxy and dark matter clustering. Mon. Not. R. Astron. Soc. 318, 203–213 (2000). doi:10.1046/j.1365-8711.2000.03715.x

    Article  ADS  Google Scholar 

  • S. Sharma, M. Steinmetz, The angular momentum distribution of gas and dark matter in galactic halos. Astrophys. J. 628, 21–44 (2005). doi:10.1086/430660

    Article  ADS  Google Scholar 

  • L.D. Shaw, J. Weller, J.P. Ostriker, P. Bode, Statistics of physical properties of dark matter clusters. Astrophys. J. 646, 815–833 (2006). doi:10.1086/505016

    Article  ADS  Google Scholar 

  • S. Singh, R. Mandelbaum, S. More, Intrinsic alignments of SDSS-III BOSS LOWZ sample galaxies. Mon. Not. R. Astron. Soc. 450, 2195–2216 (2015). doi:10.1093/mnras/stv778

    Article  ADS  Google Scholar 

  • T. Sousbie, C. Pichon, S. Colombi, D. Novikov, D. Pogosyan, The 3D skeleton: Tracing the filamentary structure of the Universe. Mon. Not. R. Astron. Soc. 383, 1655–1670 (2008). doi:10.1111/j.1365-2966.2007.12685.x

    Article  ADS  Google Scholar 

  • T. Sousbie, S. Colombi, C. Pichon, The fully connected N-dimensional skeleton: Probing the evolution of the cosmic web. Mon. Not. R. Astron. Soc. 393, 457–477 (2009). doi:10.1111/j.1365-2966.2008.14244.x

    Article  ADS  Google Scholar 

  • D. Spergel, N. Gehrels, C. Baltay, D. Bennett, J. Breckinridge, M. Donahue, A. Dressler, B.S. Gaudi, T. Greene, O. Guyon, C. Hirata, J. Kalirai, N.J. Kasdin, B. Macintosh, W. Moos, S. Perlmutter, M. Postman, B. Rauscher, J. Rhodes, Y. Wang, D. Weinberg, D. Benford, M. Hudson, W.-S. Jeong, Y. Mellier, W. Traub, T. Yamada, P. Capak, J. Colbert, D. Masters, M. Penny, D. Savransky, D. Stern, N. Zimmerman, R. Barry, L. Bartusek, K. Carpenter, E. Cheng, D. Content, F. Dekens, R. Demers, K. Grady, C. Jackson, G. Kuan, J. Kruk, M. Melton, B. Nemati, B. Parvin, I. Poberezhskiy, C. Peddie, J. Ruffa, J.K. Wallace, A. Whipple, E. Wollack, F. Zhao, Wide-Field InfrarRed survey telescope-astrophysics focused telescope assets WFIRST-AFTA 2015 report. ArXiv e-prints (2015)

  • V. Springel, S.D.M. White, A. Jenkins, C.S. Frenk, N. Yoshida, L. Gao, J. Navarro, R. Thacker, D. Croton, J. Helly, J.A. Peacock, S. Cole, P. Thomas, H. Couchman, A. Evrard, J. Colberg, F. Pearce, Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005). doi:10.1038/nature03597

    Article  ADS  Google Scholar 

  • A. Tenneti, R. Mandelbaum, T. Di Matteo, Y. Feng, N. Khandai, Galaxy shapes and intrinsic alignments in the MassiveBlack-II simulation. Mon. Not. R. Astron. Soc. 441, 470–485 (2014). doi:10.1093/mnras/stu586

    Article  ADS  Google Scholar 

  • A. Tenneti, S. Singh, R. Mandelbaum, T.D. Matteo, Y. Feng, N. Khandai, Intrinsic alignments of galaxies in the MassiveBlack-II simulation: analysis of two-point statistics. Mon. Not. R. Astron. Soc. 448, 3522–3544 (2015a). doi:10.1093/mnras/stv272

    Article  ADS  Google Scholar 

  • A. Tenneti, R. Mandelbaum, T. Di Matteo, A. Kiessling, N. Khandai, Galaxy shapes and alignments in the MassiveBlack-II hydrodynamic and dark matter-only simulations. ArXiv e-prints (2015b)

  • R. Teyssier, Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES. Astron. Astrophys. 385, 337–364 (2002). doi:10.1051/0004-6361:20011817

    Article  ADS  Google Scholar 

  • J.L. Tinker, D.H. Weinberg, Z. Zheng, I. Zehavi, On the mass-to-light ratio of large-scale structure. Astrophys. J. 631, 41–58 (2005). doi:10.1086/432084

    Article  ADS  Google Scholar 

  • J. Tinker, A.V. Kravtsov, A. Klypin, K. Abazajian, M. Warren, G. Yepes, S. Gottlöber, D.E. Holz, Toward a halo mass function for precision cosmology: The limits of universality. Astrophys. J. 688, 709–728 (2008). doi:10.1086/591439

    Article  ADS  Google Scholar 

  • J.L. Tinker, B.E. Robertson, A.V. Kravtsov, A. Klypin, M.S. Warren, G. Yepes, S. Gottlöber, The large-scale bias of dark matter halos: Numerical calibration and model tests. Astrophys. J. 724, 878–886 (2010). doi:10.1088/0004-637X/724/2/878

    Article  ADS  Google Scholar 

  • G. Tormen, The rise and fall of satellites in galaxy clusters. Mon. Not. R. Astron. Soc. 290, 411–421 (1997)

    Article  ADS  Google Scholar 

  • H.E. Trowland, G.F. Lewis, J. Bland-Hawthorn, The cosmic history of the spin of dark matter halos within the large-scale structure. Astrophys. J. 762, 72 (2013). doi:10.1088/0004-637X/762/2/72

    Article  ADS  Google Scholar 

  • M.A. Troxel, M. Ishak, Cross-correlation between cosmic microwave background lensing and galaxy intrinsic alignment as a contaminant to gravitational lensing cross-correlated probes of the universe. Phys. Rev. D 89(6), 063528 (2014). doi:10.1103/PhysRevD.89.063528

    Article  ADS  Google Scholar 

  • F.C. van den Bosch, T. Abel, R.A.C. Croft, L. Hernquist, S.D.M. White, The angular momentum of gas in protogalaxies. I. Implications for the formation of disk galaxies. Astrophys. J. 576, 21–35 (2002). doi:10.1086/341619

    Article  ADS  Google Scholar 

  • F.C. van den Bosch, T. Abel, L. Hernquist, The angular momentum of gas in protogalaxies—II. The impact of pre-heating. Mon. Not. R. Astron. Soc. 346, 177–185 (2003). doi:10.1046/j.1365-2966.2003.07079.x

    Article  ADS  Google Scholar 

  • F.C. van den Bosch, S. More, M. Cacciato, H. Mo, X. Yang, Cosmological constraints from a combination of galaxy clustering and lensing—I. Theoretical framework. Mon. Not. R. Astron. Soc. 430, 725–746 (2013). doi:10.1093/mnras/sts006

    Article  ADS  Google Scholar 

  • E. van Uitert, H. Hoekstra, T. Schrabback, D.G. Gilbank, M.D. Gladders, H.K.C. Yee, Constraints on the shapes of galaxy dark matter haloes from weak gravitational lensing. Astron. Astrophys. 545, 71 (2012). doi:10.1051/0004-6361/201219295

    Article  Google Scholar 

  • M. Velliscig, M. Cacciato, J. Schaye, R.G. Bower, R.A. Crain, M.P. van Daalen, C. Dalla Vecchia, C.S. Frenk, M. Furlong, I.G. McCarthy, M. Schaller, T. Theuns, The alignment and shape of dark matter, stellar, and hot gas distributions in the EAGLE and cosmo-OWLS simulations. ArXiv e-prints (2015)

  • M. Vitvitska, A.A. Klypin, A.V. Kravtsov, R.H. Wechsler, J.R. Primack, J.S. Bullock, The origin of angular momentum in dark matter halos. Astrophys. J. 581, 799–809 (2002). doi:10.1086/344361

    Article  ADS  Google Scholar 

  • M. Vogelsberger, S. Genel, V. Springel, P. Torrey, D. Sijacki, D. Xu, G. Snyder, D. Nelson, L. Hernquist, Introducing the Illustris Project: Simulating the coevolution of dark and visible matter in the Universe. Mon. Not. R. Astron. Soc. 444, 1518–1547 (2014). doi:10.1093/mnras/stu1536

    Article  ADS  Google Scholar 

  • L. Wang, S.M. Weinmann, G. De Lucia, X. Yang, Detection of galaxy assembly bias. Mon. Not. R. Astron. Soc. 433, 515–520 (2013). doi:10.1093/mnras/stt743

    Article  ADS  Google Scholar 

  • M.S. Warren, P.J. Quinn, J.K. Salmon, W.H. Zurek, Dark halos formed via dissipationless collapse. I—Shapes and alignment of angular momentum. Astrophys. J. 399, 405–425 (1992). doi:10.1086/171937

    Article  ADS  Google Scholar 

  • C. Welker, J. Devriendt, Y. Dubois, C. Pichon, S. Peirani, Mergers drive spin swings along the cosmic web. Mon. Not. R. Astron. Soc. 445, 46–50 (2014). doi:10.1093/mnrasl/slu106

    Article  ADS  Google Scholar 

  • D.G. York, J. Adelman, J.E. Anderson Jr., S.F. Anderson, J. Annis, N.A. Bahcall, J.A. Bakken, R. Barkhouser, S. Bastian, E. Berman, W.N. Boroski, S. Bracker, C. Briegel, J.W. Briggs, J. Brinkmann, R. Brunner, S. Burles, L. Carey, M.A. Carr, F.J. Castander, B. Chen, P.L. Colestock, A.J. Connolly, J.H. Crocker, I. Csabai, P.C. Czarapata, J.E. Davis, M. Doi, T. Dombeck, D. Eisenstein, N. Ellman, B.R. Elms, M.L. Evans, X. Fan, G.R. Federwitz, L. Fiscelli, S. Friedman, J.A. Frieman, M. Fukugita, B. Gillespie, J.E. Gunn, V.K. Gurbani, E. de Haas, M. Haldeman, F.H. Harris, J. Hayes, T.M. Heckman, G.S. Hennessy, R.B. Hindsley, S. Holm, D.J. Holmgren, C.-h. Huang, C. Hull, D. Husby, S.-I. Ichikawa, T. Ichikawa, Ž. Ivezić, S. Kent, R.S.J. Kim, E. Kinney, M. Klaene, A.N. Kleinman, S. Kleinman, G.R. Knapp, J. Korienek, R.G. Kron, P.Z. Kunszt, D.Q. Lamb, B. Lee, R.F. Leger, S. Limmongkol, C. Lindenmeyer, D.C. Long, C. Loomis, J. Loveday, R. Lucinio, R.H. Lupton, B. MacKinnon, E.J. Mannery, P.M. Mantsch, B. Margon, P. McGehee, T.A. McKay, A. Meiksin, A. Merelli, D.G. Monet, J.A. Munn, V.K. Narayanan, T. Nash, E. Neilsen, R. Neswold, H.J. Newberg, R.C. Nichol, T. Nicinski, M. Nonino, N. Okada, S. Okamura, J.P. Ostriker, R. Owen, A.G. Pauls, J. Peoples, R.L. Peterson, D. Petravick, J.R. Pier, A. Pope, R. Pordes, A. Prosapio, R. Rechenmacher, T.R. Quinn, G.T. Richards, M.W. Richmond, C.H. Rivetta, C.M. Rockosi, K. Ruthmansdorfer, D. Sandford, D.J. Schlegel, D.P. Schneider, M. Sekiguchi, G. Sergey, K. Shimasaku, W.A. Siegmund, S. Smee, J.A. Smith, S. Snedden, R. Stone, C. Stoughton, M.A. Strauss, C. Stubbs, M. SubbaRao, A.S. Szalay, I. Szapudi, G.P. Szokoly, A.R. Thakar, C. Tremonti, D.L. Tucker, A. Uomoto, D. Vanden Berk, M.S. Vogeley, P. Waddell, S.-i. Wang, M. Watanabe, D.H. Weinberg, B. Yanny, N. Yasuda (SDSS Collaboration), The Sloan digital sky survey: Technical summary. Astron. J. 120, 1579–1587 (2000). doi:10.1086/301513

    Article  ADS  Google Scholar 

  • Y.B. Zel’dovich, Gravitational instability: An approximate theory for large density perturbations Astron. Astrophys. 5, 84–89 (1970)

    ADS  Google Scholar 

  • A.R. Zentner, A.V. Kravtsov, O.Y. Gnedin, A.A. Klypin, The anisotropic distribution of galactic satellites. Astrophys. J. 629, 219–232 (2005). doi:10.1086/431355

    Article  ADS  Google Scholar 

  • Y. Zhang, X. Yang, A. Faltenbacher, V. Springel, W. Lin, H. Wang, The spin and orientation of dark matter halos within cosmic filaments. Astrophys. J. 706, 747–761 (2009). doi:10.1088/0004-637X/706/1/747

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the International Space Science Institute Bern for two workshops at which this work was conceived. We would like to thank Henk Hoekstra for very useful discussions and for his comments on drafts of this work. We would also like to thank the anonymous referee for their careful reading and detailed suggestions that helped to improve the clarity of this review. We are grateful to J. Blazek, S. Singh and M. Velliscig for sharing their data and figures. We would also like to thank the participants of the Lorentz workshop: Extracting information from weak lensing: Small scales = Big problem, for their useful discussions and insights.

A. Kiessling was supported in part by JPL, run under a contract by Caltech for NASA. A. Kiessling was also supported in part by NASA ROSES 13-ATP13-0019 and NASA ROSES 12-EUCLID12-0004. M. Cacciato was supported by the Netherlands organisation for Scientific Research (NWO) Vidi grant 639.042.814. B. Joachimi acknowledges support by an STFC Ernest Rutherford Fellowship, grant reference ST/J004421/1. T.D. Kitching is supported by a Royal Society URF. A. Leonard acknowledges the support of the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number 624151. R. Mandelbaum acknowledges the support of NASA ROSES 12-EUCLID12-0004. C. Sifón acknowledges support from the European Research Council under FP7 grant number 279396. M.L. Brown is supported by the European Research Council (EC FP7 grant number 280127) and by a STFC Advanced/Halliday fellowship (grant number ST/I005129/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Kiessling.

Ethics declarations

Compliance with Ethical Standards

Conflict of Interest: The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiessling, A., Cacciato, M., Joachimi, B. et al. Galaxy Alignments: Theory, Modelling & Simulations. Space Sci Rev 193, 67–136 (2015). https://doi.org/10.1007/s11214-015-0203-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-015-0203-6

Keywords

Navigation