Skip to main content
Log in

Solar Wind Models from the Chromosphere to 1 AU

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Recent models of the fast solar wind are characterized by low coronal electron temperatures while proton, α-particle, and minor ion temperatures are expected to be quite high and generally anisotropic, including large temperatures perpendicular to the magnetic field and parallel beams. This entails that the electric field should be relatively unimportant and that solar wind outflows with both high asymptotic flow speeds but maintaining a low mass flux should be a natural outcome of plasma expansion along open polar magnetic field lines. In this chapter we will explain why such changes with respect to the classical, electron thermally driven solar wind have come about and outline the most important remaining concerning the astrophysics of coronal winds.

The progress we have seen in the last decade is largely due observations made with instruments onboard Ulysses (McComas et al. in Space Sci. Rev. 72:93, 1995) and SOHO (Fleck et al. in The SOHO Mission, Kluwer, Dordrecht, 1995). These observations have spawned a new understanding of solar wind energetics, and the consideration of the chromosphere, corona, and solar wind as a unified system.

We will begin by giving our own, highly biased, “pocket history” of solar wind theory highlighting the problems that had to be resolved in order to make the original Parker formulation of thermally driven winds conform with observational results. Central to this discussion are questions of how the wind’s asymptotic flow speed and mass flux are set, but we will also touch upon higher order moments such as the ion and electron temperatures and heat fluxes as well as the possible role of Alfvén waves and particle effects in driving the solar wind outflow. Solar wind scaling laws will be discussed in the context of the origin of slow and fast wind streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • H. Alfvén, On the solar corona. Ark. Mat. Astron. Fys. 27A(25), 1–23 (1941)

    Google Scholar 

  • H. Alfvén, Granulation, magneto-hydrodynamic waves, and the heating of the solar corona. Mon. Not. R. Astron. Soc. 107(2), 211–219 (1947)

    Article  ADS  Google Scholar 

  • S.K. Antiochos, Z. Mikić, V.S. Titov, R. Lionello, J.A. Linker A model for the sources of the slow solar wind. Astrophys. J. 731, 112 (2011)

    Article  ADS  Google Scholar 

  • I.W. Axford, The polar wind and the terrestrial helium budget. J. Geophys. Res. 73, 6855 (1968)

    Article  ADS  Google Scholar 

  • W.I. Axford, J.F. McKenzie, The origin of high speed solar wind streams, in Solar Wind Seven Colloquium, ed. by E. Marsch, R. Schwenn (1992), pp. 1–5

    Chapter  Google Scholar 

  • J.W. Belcher, L. Davis Jr., Large-amplitude Alfvén waves in the interplanetary medium, 2. J. Geophys. Res. 76, 3534–3563 (1971)

    Article  ADS  Google Scholar 

  • L. Biermann, Zur Deutung der chromosphärischen Turbulenz und des Exzesses der UV-Strahlung der Sonne. Naturwissenshaften 33, 118–119 (1946)

    Article  ADS  Google Scholar 

  • L. Biermann, Über der Ursache der chromosphärischen Turbulenz und des UV-Exzesses der Sonnenstrahlung. Z. Astrophys. 25, 161–177 (1948)

    ADS  MATH  Google Scholar 

  • L. Biermann, Kometenschweife und solare Korpuskularstrahlung. Z. Astrophys. 29, 274 (1951)

    ADS  Google Scholar 

  • L. Biermann, Solar corpuscular radiation and the interplanetary gas. Observatory 77, 109–110 (1957)

    ADS  Google Scholar 

  • S.I. Braginskii, Transport processes in a plasma. Rev. Plasma Phys. 1, 205 (1965)

    ADS  Google Scholar 

  • B.D.G. Chandran, B. Li, B.N. Rogers, E. Quataert, K. Germaschewski, Perpendicular ion heating by low-frequency Alfvén-wave turbulence in the solar wind. Astrophys. J. 720, 503–515 (2010). doi:10.1088/0004-637X/720/1/503

    Article  ADS  Google Scholar 

  • B.D.G. Chandran, T.J. Dennis, E. Quataert, S.D. Bale, Advances in fluid modeling of the solar wind. Part 1. Electron and anisotropic proton temperatures from the collisionless dissipation of Alfven wave turbulence (2011)

  • S. Chapman, The viscosity and thermal conductivity of a completely ionized gas. Astrophys. J. 120, 151–155 (1954)

    Article  ADS  Google Scholar 

  • S. Chapman, Notes on the solar corona and the terrestrial ionosphere. Smithson. Contrib. Astrophys. 2, 1 (1957)

    Article  ADS  Google Scholar 

  • S. Chapman, V.C.A. Ferraro, The electrical state of solar streams of corpuscles. Mon. Not. R. Astron. Soc. 89, 470 (1929)

    Article  ADS  MATH  Google Scholar 

  • S.R. Cranmer, Coronal holes. Living Rev. Sol. Phys. 6, 3 (2009). http://www.livingreviews.org/lrsp-2009-3

    ADS  Google Scholar 

  • S.R. Cranmer, A.A. van Ballegooijen, R.J. Edgar, Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence. Astrophys. J., Suppl. Ser. 171, 520–551 (2007). doi:10.1086/518001

    Article  ADS  Google Scholar 

  • B. De Pontieu, S.W. McIntosh, M. Carlsson, V.H. Hansteen, T.D. Tarbell, C.J. Schrijver, A.M. Title, R.A. Shine, S. Tsuneta, Y. Katsukawa, K. Ichimoto, Y. Suematsu, T. Shimizu, S. Nagata, Chromospheric Alfvénic waves strong enough to power the solar wind. Science 318, 1574 (2007). doi:10.1126/science.1151747

    Article  ADS  Google Scholar 

  • H.G. Demars, R.W. Schunk, A multi-ion generalized transport model of the polar wind. J. Geophys. Res. 99, 2215–2226 (1994)

    Article  ADS  Google Scholar 

  • P. Dmitruk, L.J. Milano, W.H. Matthaeus, Wave-driven turbulent coronal heating in open field line regions: nonlinear phenomenological model. Astrophys. J. 548, 482–491 (2001). doi:10.1086/318685

    Article  ADS  Google Scholar 

  • B. Edlén, An attempt to identify the emission lines in the spectrum of the solar corona. Ark. Mat. Astron. Fys. 28B(1), 1–4 (1942)

    Google Scholar 

  • L.A. Fisk, Acceleration of the solar wind as a result of the reconnection of open magnetic flux with coronal loops. J. Geophys. Res. 108, 1157 (2003). doi:10.1029/2002JA009284

    Article  Google Scholar 

  • B. Fleck, V. Domingo, A. Poland (Eds.), The SOHO Mission (Kluwer, Dordrecht, 1995)

    Google Scholar 

  • S.E. Forbush, P.S. Gill, M.S. Vallarta, On the mechanism of sudden increases of cosmic radiation associated with solar flares. Rev. Mod. Phys. 21, 44–48 (1949)

    Article  ADS  Google Scholar 

  • J. Geiss, G. Gloeckler, R. von Steiger, Origin of the solar wind from composition data. Space Sci. Rev. 72, 49–60 (1995). doi:10.1007/BF00768753

    Article  ADS  Google Scholar 

  • G. Gloeckler, T.H. Zurbuchen, J. Geiss, Implications of the observed anticorrelation between solar wind speed and coronal electron temperature. J. Geophys. Res. 108, 1158 (2003). doi:10.1029/2002JA009286

    Article  Google Scholar 

  • W. Grotrian, Über den Intensitätsverhältnis der Koronalinien. Z. Astrophys. 7, 26–45 (1933)

    ADS  Google Scholar 

  • W. Grotrian, Zur Frage der Deutung der Linien im Spektrum der Sonnenkorona. Naturwissenschaften 27, 214 (1939)

    Article  ADS  MATH  Google Scholar 

  • V. Hansteen, E. Leer, Coronal heating, densities, and temperatures and solar wind acceleration. J. Geophys. Res. 100(A11), 21577–21593 (1995)

    Article  ADS  Google Scholar 

  • V.H. Hansteen, E. Leer, T.E. Holzer, The role of helium in the outer solar atmosphere. Astrophys. J. 482, 498 (1997). doi:10.1086/304111

    Article  ADS  Google Scholar 

  • J.V. Hollweg, Alfvén waves in a two-fluid model of the solar wind. Astrophys. J. 181, 547–566 (1973)

    Article  ADS  Google Scholar 

  • J.V. Hollweg, Some physical processes in the solar wind. Rev. Geophys. Space Phys. 16, 689–720 (1978)

    Article  ADS  Google Scholar 

  • T.E. Holzer, Heating and acceleration of the solar plasma (Tutorial talk), in Solar Wind 11/SOHO 16, Connecting Sun and Heliosphere. ESA Special Publication, vol. 592 (2005), p. 115

    Google Scholar 

  • T.E. Holzer, W.I. Axford, The theory of stellar winds and related flows. Annu. Rev. Astron. Astrophys. 8, 31 (1970). doi:10.1146/annurev.aa.08.090170.000335

    Article  ADS  Google Scholar 

  • S.A. Jacques, Momentum and energy transport by waves in the solar atmosphere and solar wind. Astrophys. J. 215, 942–951 (1977). doi:10.1086/155430

    Article  ADS  Google Scholar 

  • Å.M. Janse, Ø. Lie-Svendsen, E. Leer, Solar wind originating in funnels: fast or slow (2007, submitted)

  • S.A. Jaques, Solar wind models with Alfven waves. Astrophys. J. 226, 632–649 (1978). doi:10.1086/156647

    Article  ADS  Google Scholar 

  • M.A. Killie, Å.M. Janse, Ø. Lie-Svendsen, E. Leer, Improved transport equations for fully ionized gases. Astrophys. J. 604, 842–849 (2004). doi:10.1086/382023

    Article  ADS  Google Scholar 

  • J.L. Kohl, G. Noci, S.R. Cranmer, J.C. Raymond, Ultraviolet spectroscopy of the extended solar corona. Astron. Astrophys. Rev. 13, 31–157 (2006). doi:10.1007/s00159-005-0026-7

    Article  ADS  Google Scholar 

  • J.M. Laming, Non-Wkb models of the first ionization potential effect: implications for solar coronal heating and the coronal helium and neon abundances. Astrophys. J. Lett. 695, 954–969 (2009). doi:10.1088/0004-637X/695/2/954

    Article  ADS  Google Scholar 

  • E. Leer, T.E. Holzer, Energy addition in the solar wind. J. Geophys. Res. 85, 4681–4688 (1980)

    Article  ADS  Google Scholar 

  • E. Leer, T.E. Holzer, E.C. Shoub, Solar wind from a corona with a large helium abundance. J. Geophys. Res. 97, 8183–8201 (1992)

    Article  ADS  Google Scholar 

  • X. Li, S.R. Habbal, J. Kohl, G. Noci, The effect of temperature anisotropy on observations of Doppler dimming and pumping in the inner corona. Astrophys. J. Lett. 501, 133 (1998). doi:10.1086/311428

    Article  ADS  Google Scholar 

  • Ø. Lie-Svendsen, M.H. Rees, An improved kinetic model for the polar outflow of a minor ion. J. Geophys. Res. 101, 2415–2434 (1996). doi:10.1029/95JA02690

    Article  ADS  Google Scholar 

  • F. Malara, M. Velli, Wave-based heating mechanisms for the solar corona, in Solar Coronal Structures, ed. by V. Rusin, P. Heinzel, J.-C. Vial. IAU Colloq., vol. 144 (1994), pp. 443–451

    Google Scholar 

  • E. Marsch, in Kinetic Physics of the Solar Corona and Solar Wind, ed. by R. Schwenn, E. Marsch (1991), pp. 45–133

    Google Scholar 

  • E. Marsch, Kinetic physics of the solar wind plasma. Living Rev. Sol. Phys. 3, 1 (2006)

    ADS  Google Scholar 

  • W.H. Matthaeus, M. Velli, Who needs turbulence? Space Sci. Rev. (2011). doi:10.1007/s11214-011-9793-9

    Google Scholar 

  • D.J. McComas, K.L. Phillips, S.J. Bame, J.T. Gosling, B.E. Goldstein, M. Neugebauer, ULYSSES solar wind observations to 56 deg South. Space Sci. Rev. 72, 93 (1995)

    Article  ADS  Google Scholar 

  • D.J. McComas, R.W. Ebert, H.A. Elliott, B.E. Goldstein, J.T. Gosling, N.A. Schwadron, R.M. Skoug, Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett. 351, 18103 (2008). doi:10.1029/2008GL034896

    Article  ADS  Google Scholar 

  • S.W. McIntosh, B. de Pontieu, M. Carlsson, V. Hansteen, P. Boerner, M. Goossens, Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind. Nature 475, 477–480 (2011). doi:10.1038/nature10235

    Article  ADS  Google Scholar 

  • M.P. Nakada, A study of the composition of the lower solar corona. Sol. Phys. 7, 303 (1969)

    Article  ADS  Google Scholar 

  • M. Neugebauer, C.W. Snyder, Solar plasma experiment. Science 138, 1095–1097 (1962)

    Article  ADS  Google Scholar 

  • L. Ofman, Wave modeling of the solar wind. Living Rev. Sol. Phys 7, 4 (2009). http://www.livingreviews.org/lrsp-2010-4

    ADS  Google Scholar 

  • E.L. Olsen, E. Leer, A study of solar wind acceleration based on gyrotropic transport equations. J. Geophys. Res. 104, 9963 (1999)

    Article  ADS  Google Scholar 

  • E.N. Parker, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664 (1958)

    Article  ADS  Google Scholar 

  • E.N. Parker, Dynamical theory of the solar wind. Space Sci. Rev. 4, 666 (1965)

    Article  ADS  Google Scholar 

  • E.N. Parker, Heating solar coronal holes. Astrophys. J. 372, 719–727 (1991). doi:10.1086/170015

    Article  ADS  Google Scholar 

  • N.E. Raouafi, S.K. Solanki, Sensitivity of solar off-limb line profiles to electron density stratification and the velocity distribution anisotropy. Astron. Astrophys. 445, 735–745 (2006). doi:10.1051/0004-6361:20042568

    Article  ADS  Google Scholar 

  • R. Rosner, W.H. Tucker, G.S. Vaiana, Dynamics of the quiescent solar corona. Astrophys. J. 220, 643–645 (1978). doi:10.1086/155949

    Article  ADS  Google Scholar 

  • R.W. Schunk, Mathematical structure of transport equations for multispecies flows. Rev. Geophys. Space Phys. 15, 429–445 (1977)

    Article  ADS  Google Scholar 

  • N.A. Schwadron, D.J. McComas, Solar wind scaling law. Astrophys. J. 599, 1395–1403 (2003). doi:10.1086/379541

    Article  ADS  Google Scholar 

  • J.V. Shebalin, W.H. Matthaeus, D. Montgomery, Anisotropy in MHD turbulence due to a mean magnetic field. J. Plasma Phys. 29, 525–547 (1983). doi:10.1017/S0022377800000933

    Article  ADS  Google Scholar 

  • L. Spitzer, R. Härm, Transport phenomena in a completely ionized gas. Phys. Rev. 89, 977–981 (1953). doi:10.1103/PhysRev.89.977

    Article  ADS  MATH  Google Scholar 

  • J.P. St.-Maurice, R.W. Schunk, Diffusion and heat flow equations for the mid-latitude topside ionosphere. Planet. Space Sci. 25, 907–920 (1977). doi:10.1016/0032-0633(77)90003-4

    Article  ADS  Google Scholar 

  • T.K. Suzuki, S.i. Inutsuka, Making the corona and the fast solar wind: a self-consistent simulation for the low-frequency Alfvén waves from the photosphere to 0.3 AU. Astrophys. J. Lett. 632, 49–52 (2005). doi:10.1086/497536

    Article  ADS  Google Scholar 

  • S. Tomczyk, S.W. McIntosh, S.L. Keil, P.G. Judge, T. Schad, D.H. Seeley, J. Edmondson, Alfvén waves in the solar corona. Science 317, 1192 (2007). doi:10.1126/science.1143304

    Article  ADS  Google Scholar 

  • M. Velli, From supersonic winds to accretion: comments on the stability of stellar winds and related flows. Astrophys. J. Lett. 432, 55–58 (1994). doi:10.1086/187510

    Article  ADS  Google Scholar 

  • A. Verdini, M. Velli, Alfvén waves and turbulence in the solar atmosphere and solar wind. Astrophys. J. 662, 669–676 (2007). doi:10.1086/510710

    Article  ADS  Google Scholar 

  • A. Verdini, M. Velli, W.H. Matthaeus, S. Oughton, P. Dmitruk, A turbulence-driven model for heating and acceleration of the fast wind in coronal holes. Astrophys. J. Lett. 708, 116–120 (2010). doi:10.1088/2041-8205/708/2/L116

    Article  ADS  Google Scholar 

  • R. von Steiger, Transition region: first ionization potential effect, in Encycl. Astron. Astrophys., ed. by P. Murdin, (2000). doi:10.1888/0333750888/2265

    Google Scholar 

  • Y.M. Wang, Flux-tube divergence, coronal heating, and the solar wind. Astrophys. J. Lett. 410, 123–126 (1993). doi:10.1086/186895

    Article  ADS  Google Scholar 

  • Y.M. Wang, N.R. Sheeley Jr., Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726–732 (1990). doi:10.1086/168805

    Article  ADS  Google Scholar 

  • Y.M. Wang, N.R. Sheeley Jr., Why fast solar wind originates from slowly expanding coronal flux tubes. Astrophys. J. Lett. 372, 45–48 (1991). doi:10.1086/186020

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viggo H. Hansteen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansteen, V.H., Velli, M. Solar Wind Models from the Chromosphere to 1 AU. Space Sci Rev 172, 89–121 (2012). https://doi.org/10.1007/s11214-012-9887-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-012-9887-z

Keywords

Navigation