Abstract
The secular variation of the core field is generally characterized by smooth variations, sometimes interrupted by abrupt changes, named geomagnetic jerks. The origin of these events, observed and investigated for over three decades, is still not fully understood. Many fundamental features of geomagnetic jerks have been the subject of debate, including their origin internal or external to the Earth, their occurrence dates, their duration and their global or regional character. Specific tools have been developed to detect them in geomagnetic field or secular variation time series. Recently, their investigation has been advanced by the availability of a decade of high-quality satellite measurements. Moreover, advances in the modelling of the core field and its variations have brought new perspectives on the fluid motion at the top of the core, and opened new avenues in our search for the origin of geomagnetic jerks. Correlations have been proposed between geomagnetic jerks and some other geophysical observables, indicating the substantial interest in this topic in our scientific community. This paper summarizes the recent advances in our understanding and interpretation of geomagnetic jerks.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
M. Alexandrescu, D. Gibert, G. Hulot, J.L.L. Mouël, G. Saracco, Detection of geomagnetic jerks using wavelet analysis. J. Geophys. Res. 100, 12557–12572 (1995)
M. Alexandrescu, D. Gibert, G. Hulot, J.L.L. Mouël, G. Saracco, Worldwide wavelet analysis of geomagnetic jerks. J. Geophys. Res. 101, 21975–21994 (1996)
M. Alexandrescu, V. Courtillot, J.L. Le Mouël, High-resolution secular variation of the geomagnetic field in western Europe over the last 4 centuries: Comparison and integration of historical data from Paris and London. J. Geophys. Res. 102, 20245–20258 (1997)
L.R. Alldredge, A discussion of impulses and jerks in the geomagnetic field. J. Geophys. Res. 89, 4403–4412 (1984)
G.E. Backus, Application of mantle filter theory to the magnetic jerk of 1969. Geophys. J. R. Astron. Soc. 74, 713–746 (1983)
R.J. Banks, Geomagnetic variations and the conductivity of the upper mantle. Geophys. J. R. Astron. Soc. 17, 457–487 (1969)
D. Barraclough, Observations of the Earth’s magnetic field in Edinburgh, from 1670 to the present day. Trans. R. Soc. Edinb. Earth Sci. 85, 239–252 (1995)
C. Beggan, K. Whaler, Core flow modelling assumptions. Earth Planet. Inter. 167, 217–222 (2008)
E. Bellanger, J.L.L. Mouël, M. Mandea, S. Labrosse, Chandler wobble and geomagnetic jerks. Phys. Earth Planet. Int. 124, 95–103 (2001)
E. Bellanger, E.M. Blanter, J.L. Le Mouël, M. Mandea, M.G. Shnirman, On the geometry of the external geomagnetic irregular variations. J. Geophys. Res. (Space Phys.) 107, 20–21 (2002). doi:10.1029/2001JA900112
E.R. Benton, K.A. Whaler, Rapid diffusion of the poloidal geomagnetic field through the weakly conducting mantle: A perturbation solution. Geophys. J. R. Astron. Soc. 75, 77–100 (1983)
J. Bloxham, A. Jackson, Time-dependent mapping of the magnetic field at the core-mantle boundary. J. Geophys. Res. 97, 19537–19563 (1992)
J. Bloxham, S. Zatman, M. Dumberry, The origin of geomagnetic jerks. Nature 420(6911), 65–68 (2002)
L. Cafarella, A. DeSantis, A. Meloni, Secular variation in Italy from historical geomagnetic field measurements. Phys. Earth Planet. Inter. 73, 206–221 (1992)
V. Cannelli, D. Melini, P.D. Michelis, A. Piersanti, F. Florindo, Core-mantle boundary deformations and J2 variations resulting from the 2004 Sumatra earthquake. Geophys. J. Int. (2007). doi:10.1111/j.1365-246X.2007.03443.x
A. Cazenave, R.S. Nerem, Redistributing Earth’s mass. Science 297 (2002). doi:10.1126/science.1074593
A. Chambodut, M. Mandea, Evidence for geomagnetic jerks in comprehensive models. Earth Planets Space 57, 139–149 (2005)
A. Chambodut, I. Panet, M. Mandea, M. Diament, M. Holschneider, O. Jamet, Wavelet frames: An alternative to spherical harmonic representation of potential fields. Geophys. J. Int. 163, 875–899 (2005). doi:10.1111/j.1365-246X.2005.02754.x
A. Chambodut, C. Eymin, M. Mandea, Geomagnetic jerks from the Earth’s surface to the top of the core. Earth Planets Space 59, 675–684 (2007)
B.F. Chao, A.Y. Au, J.P. Boy, C.M. Cox, Time-variable gravity signal of an anomalous redistribution of water mass in the extratropic pacific during 1998–2002. Geochem. Geophys. Geosyst. 4, 1096 (2003). doi:10.1029/2003GC000589
C.G. Constable, R.L. Parker, Smoothing, splines and smoothing splines: Their application in geomagnetism. J. Comput. Phys. 78, 493–508 (1988)
V. Courtillot, J. Ducruix, J.L. Le Mouël, Sur une accélération récente de la variationséculaire du champ magnétique terrestre. C. R. Acad. Sci. Paris, Ser. D 287, 1095–1098 (1978)
C.M. Cox, B.F. Chao, Detection of a large-scale mass redistribution in the terrestrial system since 1998. Science 297, 437–450 (2002). doi:10.1126/science.1074593
F.A. Dahlen, A correction to the excitation of the Chandler wobble by earthquakes. Geophys. J. R. Astron. Soc. 32, 203–217 (1973)
P. De Michelis, R. Tozzi, A local intermittency measure (lim) approach to the detection of geomagnetic jerks. Earth Planet. Sci. Lett. 235, 261–272 (2005)
P. De Michelis, L. Cafarella, A. Meloni, Worldwide character of the 1991 geomagnetic jerk. Geophys. Res. Lett. 25, 377 (1998)
M. Dumberry, Comment on “Could the Mw=9.3 Sumatra earthquake trigger a geomagnetic jerk?”. Eos Trans. AGU 86 (2005)
D. Enescu, B.D. Enescu, Possible cause-effect relationships between Vrancea (Romania) earthquakes and some global geophysical phenomena. Nat. Hazards 19, 233–245 (1999). doi:10.1023/A:1008095708316
F. Florindo, P. De Michelis, A. Piersanti, E. Boschi, Could the mw=9.3 Sumatra earthquake trigger a geomagnetic jerk? EOS Trans. AGU 86, 123 (2005)
A. Fournier, C. Eymin, T. Alboussière, Towards variational geomagnetic data assimilation: Insights from a one-dimensional, nonlinear and sparsely observed MHD system. Nonlinear Process. Geophys. 14, 1–18 (2007)
E. Friis-Christensen, H. Lühr, G. Hulot, R. Haagmans, M. Purucker, Geomagnetic research from space. EOS Trans. AGU 90(25), 213–214 (2009)
F. Fürst, J. Wilms, R.E. Rothschild, K. Pottschmidt, D.M. Smith, R. Lingenfelter, Temporal variations of strength and location of the South Atlantic anomaly as measured by RXTE. Earth Planet. Sci. Lett. 281, 125–133 (2009). doi:10.1016/j.epsl.2009.02.004
D. Gibert, J.L. Le Mouël, Inversion of polar motion data: Chandler wobble, phase jumps, and geomagnetic jerks. J. Geophys. Res. 113 (2008). doi:10.1029/2008JB005700
D. Gibert, M. Holschneider, J.L. Le Mouël, Wavelet analysis of the Chandler wobble. J. Geophys. Res. 103, 27069–27089 (1998)
N. Gillet, M.A. Pais, D. Jault, Ensemble inversion of time-dependent core flow models. Geophys. J. Int. 10 (2009)
V.P. Golovkov, T.I. Svereva, A.O. Simourian, Common features and differences between jerks of 1947, 1958 and 1969. Geophys. Astrophys. Fluid Dyn. 49, 81–96 (1989)
R.S. Gross, The influence of earthquakes on the Chandler wobble during 1977–1983. J. Geophys. Res. 85, 161–177 (1986)
R.S. Gross, The excitation of the Chandler wobble. Geophys. Res. Lett. 27, 2329–2332 (2000)
D. Gubbins, P.H. Roberts, Magnetohydrodynamics of the Earth’s core, in Geomagnetism, vol. 2, ed. by J.A. Jacobs (Academic Press, San Diego, 1987), p. 1
E. Halley, On the cause of the change in the variation of the magnetic needle; with an hypothesis of the structure of the internal parts of the Earth. Philos. Trans. R. Soc. Lond. 17, 470–478 (1692)
J. Hinderer, C. Gire, H. Legros, J.L. Le Mouël, Geomagnetic secular variation, core motions and implications for the Earth’s wobble. Phys. Earth Planet. Inter. 49, 121–132 (1987)
R. Holme, Large-scale flow in the core, in Treatise on Geophysics, vol. 8 (Elsevier, Amsterdam, 2007)
R. Holme, O. de Viron, Geomagnetic jerks and a high-resolution length-of-day profile for core studies. Geophys J. Int. 160, 435–439 (2005). doi:10.1111/j.1365-246X.2004.02510.x
R. Holme, O. de Viron, Evidence for a geomagnetic jerk after 2003 in LOD, in Proceedings of the First International Swarm Science Meeting, vol. WPP-261 (ESA/ESTEC, Noordwijk, 2006)
R. Holme, K.A. Whaler, Steady core flow in an azimuthally drifting reference frame. Geophys. J. Int. 145, 560–569 (2001)
A. Jackson, J. Bloxham, D. Gubbins, Time-dependent flow at the core surface and conservation of angular momentum in the coupled core-mantle system, in Dynamics of the Earth’s Deep Interior and Earth Rotation, ed. by J.L. Le Mouël, D.E. Smylie, T. Herring (IUGG, AGU, 1993), pp. 97–107
D. Jault, J.L. Le Mouël, Does secular variation involve motions in the deep core? Phys. Earth Planet. Inter. 82, 185–193 (1994)
D. Jault, C. Gire, J.L. Le Mouël, Westward drift, core motions and exchanges of angular momentum between core and mantle. Nature 333(6171), 353–356 (1988)
M. Korte, M. Mandea, Magnetic poles and dipole tilt variation over the past decades to millennia. Earth Planets Space 60, 937–948 (2008)
M. Korte, M. Mandea, J. Matzka, A historical declination curve for Munich from different data sources. Phys. Earth Planet. Inter. 174, 161–172 (2009)
A.V. Kuvshinov, N. Olsen, A global model of mantle conductivity derived from 5 years of Champ, Ørsted, and SAC-C magnetic data. Geophys. Res. Lett. 33, 18301 (2006). doi:10.1029/2006GL027083
A.V. Kuvshinov, H. Utada, D. Avdeev, T. Koyama, 3-D modelling and analysis of Dst C-responses in the North Pacific ocean region, revisited. Geophys. J. Int. 60(2), 505–526 (2005)
B.N. Lahiri, A.T. Price, Electromagnetic induction in non-uniform conductors, and the determination of the conductivity of the Earth from terrestrial magnetic variations. Philos. Trans. R. Soc. A 237, 509–540 (1939)
M. Le Huy, M. Alexandrescu, G. Hulot, J.L. Le Mouël, On the characteristics of successive geomagnetic jerks. Earth Planets Space 50, 723–732 (1998)
J.L. Le Mouël, T.R. Madden, J. Ducruix, V. Courtillot, Decade fluctuations in geomagnetic westward drift and Earth’s geomagnetic field. Nature 290, 763–765 (1981)
V. Lesur, I. Wardinski, M. Rother, M. Mandea, GRIMM—The GFZ Reference Internal Magnetic Model based on vector satellite and observatory data. Geophys. J. Int. 173 (2008). doi:10.1111/j.1365-246X.2008.03724.x
V. Lesur, I. Wardinski, S. Asari, B. Minchev, M. Mandea, Modelling the Earth’s core magnetic field under flow constraints. Earth Planets Space 62(6), 503–516 (2010)
S. Macmillan, A geomagnetic jerk for the early 1990s. Earth Planet. Sci. Lett. 137, 189–192 (1996)
S.R.C. Malin, E. Bullard, The direction of the Earth’s magnetic field at London, 1570–1975. Philos. Trans. R. Soc. Lond. 299, 357–423 (1981)
S.R.C. Malin, B.M. Hodder, Was the 1970 geomagnetic jerk of internal or external origin? Nature 726–728 (1982)
S.R.C. Malin, B.M. Hodder, D.R. Barraclough, Geomagnetic secular variation: a jerk in 1970, in 75th Anniversary Volume of Ebro Observatory, ed. by J.R. Cardus (Ebro Observatory, Tarragona, 1983), pp. 239–256
M. Mandea, E. Dormy, Asymmetric behaviour of magnetic dip poles. Earth Planets Space 55, 153–157 (2003)
M. Mandea, S. Macmillan, International Geomagnetic Reference Field—the eighth generation. Earth Planets Space 52, 1119–1124 (2000)
M. Mandea, N. Olsen, A new approach to directly determine the secular variation from magnetic satellite observations. Geophys. Res. Lett. 33, L15306 (2006). doi:10.1029/2006GL026616
M. Mandea, N. Olsen, Geomagnetic and archeomagnetic jerks: Where do we stand? EOS Trans. AGU 90 (2009)
M. Mandea Alexandrescu, D. Gibert, J.L. Le Mouël, G. Hulot, G. Saracco, An estimate of average lower mantle conductivity by wavelet analysis of geomagnetic jerks. J. Geophys. Res. 104, 17735–17745 (1999)
M. Mandea, E. Bellanger, J.L.L. Mouël, A geomagnetic jerk for the end of the 20th century? Earth Planet. Sci. Lett. 183, 369–373 (2000)
K.L. McDonald, Penetration of the geomagnetic secular field through a mantle with variable conductivity. J. Geophys. Res. 62, 117–141 (1957)
H. Nagao, T. Higuchi, T. Iyemori, T. Araki, Automatic detection of geomagnetic jerks by applying a statistical time series model to geomagnetic monthly means, in Progress in Discovery Science, Final Report of the Japanese Discovery Science Project, ed. by S. Arikawa, A.S. Springer. Lecture Notes in Artificial Intelligence, vol. 2281 (2001), pp. 360–371
H. Nagao, T. Iyemori, T. Higuchi, T. Araki, Lower mantle conductivity anomalies estimated from geomagnetic jerks. J. Geophys. Res. 108 (2003)
L. Newitt, M. Mandea, L. McKee, J.J. Orgeval, Recent acceleration of the North Magnetic Pole linked to magnetic jerks. Eos Trans. AGU 83(35), 381–389 (2002)
L. Newitt, A. Chulliat, J.J. Orgeval, Location of the north magnetic pole in April 2007. Earth Planets Space 61, 703–710 (2009)
N. Olsen, The electrical conductivity of the mantle beneath Europe derived from C-responses from 3 to 720 h. Geophys. J. Int. 133, 298–308 (1998)
N. Olsen, Long-period (30 days–1 year) electromagnetic sounding and the electrical conductivity of the lower mantle beneath Europe. Geophys. J. Int. 138, 179–187 (1999)
N. Olsen, M. Mandea, Will the magnetic north pole wind up in Siberia? (2007)
N. Olsen, M. Mandea, Rapidly changing flows in the Earth’s core. Nat. Geosci. 1, 390–394 (2008). doi:10.1038/ngeo203
N. Olsen, H. Lühr, T. Sabaka, M. Mandea, M. Rother, L. Toffner-Clausen, S. Choi, CHAOS—A model of the Earth’s magnetic field derived from CHAMP, Ørsted, and SAC-C magnetic satellite data. Geophys. J. Int. 166(1), 67–75 (2006). doi:10.1111/j.1365-246X.2006.02959.x
N. Olsen, M. Mandea, T.J. Sabak, L. Tøffner-Clausen, Chaos-2—A geomagnetic field model derived from one decade of continuous satellite data. Geophys. J. Int. 179, 1477–1487 (2009). doi:10.1111/j.1365-246X.2009.04386.x
K. Pinheiro, A. Jackson, Can a 1-D mantle electrical conductivity model generate magnetic jerk differential time delays? Geophys. J. Int. 173, 781–792 (2008)
P.H. Roberts, S. Scott, On the analysis of secular variation. 1. A hydromagnetic constraint: Theory. J. Geomagn. Geoelectr. 17, 137–151 (1965)
T.J. Sabaka, N. Olsen, M.E. Purucker, Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data. Geophys. J. Int. 159, 521–547 (2004). doi:10.1111/j.1365-246X.2004.02421.x
T. Shirai, T. Fukushima, Z. Malkin, Detection of phase disturbances of free core nutation of the Earth and their concurrence with geomagnetic jerks. Earth Planets Space 57, 151–155 (2005)
L. Silva, Ecoulements a la surface du noyau, secousses geomagnetiques et predictions a court terme du champ magnetique terrestre. PhD IPGP, France, 2010
A. Soare, G. Cucu, M. Mandea-Alexandrescu, Historical geomagnetic measurements in Romania. Ann. Geofis. 41, 539–554 (1998)
D.N. Stewart, K.A. Whaler, Geomagnetic disturbance fields: An analysis of observatory monthly means. Geophys. J. Int. 108, 215–223 (1992)
G. Verbanac, M. Korte, M. Mandea, Four decades of European geomagnetic secular variation and acceleration. Ann. Geophys. 52, 487–503 (2009)
R. Waddington, D. Gubbins, N. Barber, Geomagnetic-field analysis 5. Determining steady core-surface flows directly from geomagnetic observations. Geophys. J. Int. 122, 326–350 (1995)
J.M. Wahr, The Earth’s rotation. Ann. Rev. Earth Planet. Sci. 16, 231–249 (1988)
I. Wardinski, R. Holme, A time-dependent model of the Earth’s magnetic field and its secular variation for the period 1980 to 2000. J. Geophys. Res. B 111, 12101 (2006). doi:10-10292006004401
I. Wardinski, R. Holme, S. Asari, M. Mandea, The 2003 geomagnetic jerk and its relation to the core surface flows. Earth Planet. Sci. Lett. 267, 468–481 (2008). doi:10.1016/j.epsl2007.12.008
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mandea, M., Holme, R., Pais, A. et al. Geomagnetic Jerks: Rapid Core Field Variations and Core Dynamics. Space Sci Rev 155, 147–175 (2010). https://doi.org/10.1007/s11214-010-9663-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11214-010-9663-x