Skip to main content
Log in

An Assessment of the Systematic Uncertainty in Present and Future Tests of the Lense-Thirring Effect with Satellite Laser Ranging

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

We deal with the attempts to measure the Lense-Thirring effect with the Satellite Laser Ranging (SLR) technique applied to the existing LAGEOS and LAGEOS II terrestrial satellites and to the recently approved LARES spacecraft. According to general relativity, a central spinning body of mass M and angular momentum S like the Earth generates a gravitomagnetic field which induces small secular precessions of the orbit of a test particle geodesically moving around it. Extracting this signature from the data is a demanding task because of many classical orbital perturbations having the same pattern as the gravitomagnetic one, like those due to the centrifugal oblateness of the Earth which represents a major source of systematic bias. The first issue addressed here is: are the so far published evaluations of the systematic uncertainty induced by the bad knowledge of the even zonal harmonic coefficients J of the multipolar expansion of the Earth’s geopotential reliable and realistic? Our answer is negative. Indeed, if the differences ΔJ among the even zonals estimated in different Earth’s gravity field global solutions from the dedicated GRACE mission are assumed for the uncertainties δ J instead of using their covariance sigmas \(\sigma_{J_{\ell}}\) , it turns out that the systematic uncertainty δ μ in the Lense-Thirring test with the nodes Ω of LAGEOS and LAGEOS II may be up to 3 to 4 times larger than in the evaluations so far published (5–10%) based on the use of the sigmas of one model at a time separately. The second issue consists of the possibility of using a different approach in extracting the relativistic signature of interest from the LAGEOS-type data. The third issue is the possibility of reaching a realistic total accuracy of 1% with LAGEOS, LAGEOS II and LARES, which should be launched in November 2009 with a VEGA rocket. While LAGEOS and LAGEOS II fly at altitudes of about 6000 km, LARES will be likely placed at an altitude of 1450 km. Thus, it will be sensitive to much more even zonals than LAGEOS and LAGEOS II. Their corrupting impact has been evaluated with the standard Kaula’s approach up to degree =60 by using ΔJ and \(\sigma_{J_{\ell }}\) ; it turns out that it may be as large as some tens percent. The different orbit of LARES may also have some consequences on the non-gravitational orbital perturbations affecting it which might further degrade the obtainable accuracy in the Lense-Thirring test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • J.I. Andrés, Enhanced Modelling of LAGEOS Non-Gravitational Perturbations. PhD Thesis Book (Ed. Sieca Repro Turbineweg, Delft, 2007)

    Google Scholar 

  • D.C. Christodoulidis, D.E. Smith, R.G. Williams, S.M. Klosko, Observed tidal braking in the Earth/Moon/Sun system. J. Geophys. Res. 93(B6), 6216–6236 (1988)

    Article  ADS  Google Scholar 

  • I. Ciufolini, Measurement of the Lense-Thirring drag on high-altitude, laser-ranged artificial satellites. Phys. Rev. Lett. 56(4), 278–281 (1986)

    Article  ADS  Google Scholar 

  • I. Ciufolini, On a new method to measure the gravitomagnetic field using two orbiting satellites. Nuovo Cim. A 109(12), 1709–1720 (1996)

    Article  ADS  Google Scholar 

  • I. Ciufolini, LARES/WEBER-SAT, frame-dragging and fundamental physics. http://arxiv.org/abs/gr-qc/0412001. Accessed 3 January 2005

  • I. Ciufolini, On the orbit of the LARES satellite. http://arxiv.org/abs/gr-qc/0609081. Accessed 20 September 2006

  • I. Ciufolini, http://www.infn.it/indexen.php. Astroparticle Physics. Calendario riunioni. Roma, 30 gennaio 2008. 14:30 Aggiornamento LARES (20’). lares_dellagnello.pdf (2008a), p. 17

  • I. Ciufolini, http://www.infn.it/indexen.php. Astroparticle Physics. Calendario riunioni. Villa Mondragone, 30 sett.–4 ott. Friday 03 October 2008. 10:20 LARES (20’) (2008b)

  • I. Ciufolini, E.C. Pavlis, A confirmation of the general relativistic prediction of the Lense–Thirring effect. Nature 431, 958–960 (2004)

    Article  ADS  Google Scholar 

  • I. Ciufolini, E.C. Pavlis, On the measurement of the Lense-Thirring effect using the nodes of the LAGEOS satellites, in reply to “On the reliability of the so far performed tests for measuring the Lense-Thirring effect with the LAGEOS satellites” by L. Iorio. New Astron. 10(8), 636–651 (2005)

    Article  ADS  Google Scholar 

  • I. Ciufolini, D.M. Lucchesi, F. Vespe, A. Mandiello, Measurement of dragging of inertial frames and gravitomagnetic field using laser-ranged satellites. Nuovo Cim. A 109(5), 575–590 (1996)

    Article  ADS  Google Scholar 

  • I. Ciufolini, E.C. Pavlis, F. Chieppa, E. Fernandes-Vieira, J. Pérez-Mercader, Test of general relativity and measurement of the Lense-Thirring effect with two Earth satellites. Science 279(5359), 2100–2103 (1998a)

    Article  ADS  Google Scholar 

  • I. Ciufolini et al., LARES Phase A (University La Sapienza, Rome, 1998b)

    Google Scholar 

  • I. Ciufolini, E.C. Pavlis, R. Peron, Determination of frame-dragging using Earth gravity models from CHAMP and GRACE. New Astron. 11(8), 527–550 (2006)

    Article  ADS  Google Scholar 

  • L. Combrinck, Evaluation of PPN parameter Gamma as a test of General Relativity using SLR data, in 16th Int. Laser Ranging Workshop, Poznań (PL), 13–17 October 2008

  • L. Cugusi, E. Proverbio, Relativistic effects on the motion of Earth’s artificial satellites. Astron. Astrophys. 69, 321–325 (1978)

    ADS  Google Scholar 

  • J.J. Degnan, Satellite laser ranging: current status and future prospects. IEEE Trans. Geosci. Remote Sens. GE-23(4), 398–413 (1985)

    Article  ADS  Google Scholar 

  • C.W.F. Everitt, The gyroscope experiment I. General description and analysis of gyroscope performance, in Proc. Int. School Phys. “Enrico Fermi” Course LVI, ed. by B. Bertotti (New Academic Press, New York, 1974), pp. 331–360

    Google Scholar 

  • C.W.F. Everitt et al., Gravity Probe B: Countdown to launch, in Gyros, Clocks, Interferometers… : Testing Relativistic Gravity in Space, ed. by C. Lämmerzahl, C.W.F. Everitt, F.W. Hehl (Springer, Berlin, 2001), pp. 52–82

    Chapter  Google Scholar 

  • P. Inversi, F. Vespe, Direct and indirect solar radiation effects acting on LAGEOS satellite: Some refinements. Adv. Space Res. 14(5), 73–77 (1994)

    Article  ADS  Google Scholar 

  • L. Iorio, Letter to the editor: A critical approach to the concept of a polar, low-altitude LARES satellite. Class. Quantum Gravity 19(17), L175–L183 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • L. Iorio, The impact of the static part of the Earth’s gravity field on some tests of General Relativity with satellite laser ranging. Celest. Mech. Dyn. Astron. 86(3), 277–294 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • L. Iorio, The impact of the new Earth gravity models on the measurement of the Lense-Thirring effect with a new satellite. New Astron. 10(8), 616–635 (2005a)

    Article  ADS  Google Scholar 

  • L. Iorio, On the possibility of testing the Dvali Gabadadze Porrati brane-world scenario with orbital motions in the Solar system. J. Cosmol. Astropart. Phys. 7, 8 (2005b)

    Article  MathSciNet  ADS  Google Scholar 

  • L. Iorio, Comments, replies and notes: A note on the evidence of the gravitomagnetic field of Mars. Class. Quantum Gravity 23(17), 5451–5454 (2006a)

    Article  MATH  ADS  Google Scholar 

  • L. Iorio, A critical analysis of a recent test of the Lense-Thirring effect with the LAGEOS satellites. J. Geod. 80(3), 128–136 (2006b)

    Article  MATH  ADS  Google Scholar 

  • L. Iorio, The impact of the new Earth gravity model EIGEN-CG03C on the measurement of the Lense-Thirring effect with some existing Earth satellites. Gen. Relativ. Gravit. 38(3), 523–527 (2006c)

    Article  MATH  ADS  Google Scholar 

  • L. Iorio, Reply to “Comment on ‘Evidence of the gravitomagnetic field of Mars’ ”, by Kris Krogh. J. Gravit. Phys. (2007a, in press). http://arxiv.org/abs/gr-qc/0701146

  • L. Iorio (ed.), The Measurement of Gravitomagnetism: A Challenging Enterprise (NOVA, Hauppauge, 2007b)

    Google Scholar 

  • L. Iorio, A comment on the paper “On the orbit of the LARES satellite”, by I. Ciufolini. Planet. Space Sci. 55(10), 1198–1200 (2007c)

    Article  ADS  Google Scholar 

  • L. Iorio, LARES/WEBER-SAT and the equivalence principle. Europhys. Lett. 80(4), 40007 (2007d)

    Article  ADS  Google Scholar 

  • L. Iorio, An assessment of the measurement of the Lense-Thirring effect in the Earth gravity field, in reply to: “On the measurement of the Lense-Thirring effect using the nodes of the LAGEOS satellites, in reply to “On the reliability of the so far performed tests for measuring the Lense-Thirring effect with the LAGEOS satellites” by L. Iorio”, by I. Ciufolini and E. Pavlis. Planet. Space Sci. 55(4), 503–511 (2007e)

    Article  ADS  Google Scholar 

  • L. Iorio, Advances in the measurement of the Lense-Thirring effect with planetary motions in the field of the Sun. Sch. Res. Exch. 2008, 105235 (2008a)

    Google Scholar 

  • L. Iorio, On the impact of the atmospheric drag on the LARES mission (2008b). http://arxiv.org/abs/gr-qc/0809.3564. Accessed 8 October 2008

  • L. Iorio, A. Morea, The impact of the new Earth gravity models on the measurement of the Lense-Thirring effect. Gen. Relativ. Gravit. 36(6), 1321–1333 (2004)

    Article  MATH  ADS  Google Scholar 

  • L. Iorio, D.M. Lucchesi, I. Ciufolini, The LARES mission revisited: an alternative scenario. Class. Quantum Gravity 19(16), 4311–4325 (2002)

    Article  MATH  ADS  Google Scholar 

  • A. Jäggi, G. Beutler, L. Mervart, GRACE gravity field determination using the celestial mechanics approach—first results. Presented at the IAG Symposium on “Gravity, Geoid, and Earth Observation 2008”, Chania, GR, 23–27 June 2008

  • W.M. Kaula, Theory of Satellite Geodesy (Blaisdell, Waltham, 1966)

    Google Scholar 

  • K. Krogh, Comments, replies and notes: Comment on ‘Evidence of the gravitomagnetic field of Mars’. Class. Quantum Gravity 24(22), 5709–5715 (2007)

    Article  ADS  Google Scholar 

  • F.G. Lemoine, S.C. Kenyon, J.K. Factor, R.G. Trimmer, N.K. Pavlis, D.S. Chinn, C.M. Cox, S.M. Klosko, S.B. Luthcke, M.H. Torrence, Y.M. Wang, R.G. Williamson, E.C. Pavlis, R.H. Rapp, T.R. Olson, The Development of the Joint NASA GSFC and the National Imagery Mapping Agency (NIMA) Geopotential Model EGM96. NASA/TP-1998-206861, 1998

  • J. Lense, H. Thirring, Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. 19, 156–163 (1918)

    Google Scholar 

  • F.J. Lerch, R.S. Nerem, B.H. Putney, T.L. Felsentreger, B.V. Sanchez, J.A. Marshall, S.M. Klosko, G.B. Patel, R.G. Williamson, D.S. Chinn, A geopotential model from satellite tracking, altimeter, and surface gravity data: GEM-T3. J. Geophys. Res. 99(B2), 2815–2839 (1994)

    Article  ADS  Google Scholar 

  • D.M. Lucchesi, Reassessment of the error modelling of non-gravitational perturbations on LAGEOS II and their impact in the Lense-Thirring determination. Part I. Planet. Space Sci. 49(5), 447–463 (2001)

    Article  ADS  Google Scholar 

  • D.M. Lucchesi, Reassessment of the error modelling of non-gravitational perturbations on LAGEOS II and their impact in the Lense-Thirring determination. Part II. Planet. Space Sci. 50(10–11), 1067–1100 (2002)

    Article  ADS  Google Scholar 

  • D.M. Lucchesi, The asymmetric reflectivity effect on the LAGEOS satellites and the germanium retroreflectors. Geophys. Res. Lett. 30(18), 1957 (2003)

    Article  ADS  Google Scholar 

  • D.M. Lucchesi, LAGEOS satellites germanium cube-corner-retroreflectors and the asymmetric reflectivity effect. Celest. Mech. Dyn. Astron. 88(3), 269–291 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • D.M. Lucchesi, The impact of the even zonal harmonics secular variations on the Lense-Thirring effect measurement with the two Lageos satellites. Int. J. Mod. Phys. D 14(12), 1989–2023 (2005)

    Article  MATH  ADS  Google Scholar 

  • D.M. Lucchesi, The LAGEOS satellites orbital residuals determination and the way to extract gravitational and non-gravitational unmodeled perturbing effects. Adv. Space Res. 39(10), 1559–1575 (2007)

    Article  ADS  Google Scholar 

  • D.M. Lucchesi, G. Balmino, The LAGEOS satellites orbital residuals determination and the Lense Thirring effect measurement. Planet. Space Sci. 54(6), 581–593 (2006)

    ADS  Google Scholar 

  • D.M. Lucchesi, A. Paolozzi, A cost effective approach for LARES satellite, in XVI Congresso Nazionale AIDAA, Palermo, IT, 24–28 September 2001

  • D.M. Lucchesi, I. Ciufolini, J.I. Andrés, E.C. Pavlis, R. Peron, R. Noomen, D.G. Currie, LAGEOS II perigee rate and eccentricity vector excitations residuals and the Yarkovsky-Schach effect. Planet. Space Sci. 52(8), 699–710 (2004)

    Article  ADS  Google Scholar 

  • B. Mashhoon, Gravitoelectromagnetism: a brief review, in The Measurement of Gravitomagnetism: A Challenging Enterprise, ed. by L. Iorio (NOVA, Hauppauge, 2007), pp. 29–39

    Google Scholar 

  • T. Mayer-Gürr, A. Eicker, K.-H. Ilk, ITG-GRACE02s: a GRACE gravity field derived from short arcs of the satellite’s orbit, in 1st Int. Symp. of the International Gravity Field Service “Gravity Field of the Earth”, Istanbul, TR, 28 August–1 September 2006

  • T. Mayer-Gürr, ITG-Grace03s: The latest GRACE gravity field solution computed in Bonn, in Joint Int. GSTM and DFG SPP Symp., Potsdam, 15–17 October 2007. http://www.geod.uni-bonn.de/itg-grace03.html

  • A. Milani, A.M. Nobili, P. Farinella, Non-Gravitational Perturbations and Satellite Geodesy (Adam Hilger, Bristol, 1987)

    MATH  Google Scholar 

  • E.C. Pavlis, Geodetic contributions to gravitational experiments in space, in Recent Developments in General Relativity: Proc. 14th SIGRAV Conf. on General Relativity and Gravitational Physics, ed. by R. Cianci, R. Collina, M. Francaviglia, P. Fré. Genova, IT, 18–22 September 2000 (Springer, Milan, 2002), pp. 217–233

    Google Scholar 

  • H. Pfister, On the history of the so-called Lense-Thirring effect. Gen. Relativ. Gravit. 39(11), 1735–1748 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • G.E. Pugh, WSEG Research Memorandum No. 11, 1959

  • Ch. Reigber, R. Schmidt, F. Flechtner, R. König, U. Meyer, K.-H. Neumayer, P. Schwintzer, S.Y. Zhu, An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J. Geodyn. 39(1), 1–10 (2005)

    Article  Google Scholar 

  • J.C. Ries, R.J. Eanes, M.M. Watkins, B.D. Tapley, Joint NASA/ASI Study on Measuring the Lense-Thirring Precession Using a Second LAGEOS Satellite CSR-89-3 Center for Space Research, Austin, 1989

  • J.C. Ries, R.J. Eanes, B.D. Tapley, Lense-Thirring precession determination from laser ranging to artificial satellites, in Nonlinear Gravitodynamics. The Lense–Thirring Effect, ed. by R.J. Ruffini, C. Sigismondi (World Scientific, Singapore, 2003a), pp. 201–211

    Google Scholar 

  • J.C. Ries, R.J. Eanes, B.D. Tapley, G.E. Peterson, Prospects for an improved Lense-Thirring test with SLR and the GRACE gravity mission, in Proc. 13th Int. Laser Ranging Workshop, NASA CP (2003-212248), ed. by R. Noomen, S. Klosko, C. Noll, M. Pearlman (NASA Goddard, Greenbelt, 2003b). http://cddisa.gsfc.nasa.gov/lw13/lw_proceedings.html#science

    Google Scholar 

  • J.C. Ries, R.J. Eanes, M.M. Watkins, Confirming the frame-dragging effect with satellite laser ranging, in 16th Int. Laser Ranging Workshop, Poznań (PL), 13–17 October 2008

  • M.L. Ruggiero, A. Tartaglia, Gravitomagnetic effects. Nuovo Cim. B 117(7), 743–768 (2002)

    ADS  Google Scholar 

  • G. Schäfer, Gravitomagnetic effects. Gen. Relativ. Gravit. 36(10), 2223–2235 (2004)

    Article  MATH  ADS  Google Scholar 

  • L. Schiff, Possible new experimental test of general relativity theory. Phys. Rev. Lett. 4(5), 215–217 (1960)

    Article  ADS  Google Scholar 

  • M. Soffel, Relativity in Astrometry, Celestial Mechanics and Geodesy (Springer, Berlin, 1989)

    Google Scholar 

  • B.D. Tapley, J.C. Ries, S. Bettadpur, D. Chambers, M. Cheng, F. Condi, B. Gunter, Z. Kang, P. Nagel, R. Pastor, T. Pekker, S. Poole, F. Wang, GGM02-An improved Earth gravity field model from GRACE. J. Geod. 79(8), 467–478 (2005)

    Article  ADS  Google Scholar 

  • B.D. Tapley, J.C. Ries, S. Bettadpur, D. Chambers, M. Cheng, F. Condi, S. Poole, American Geophysical Union, Fall Meeting 2007, Abstract #G42A-03, 2007

  • R.A. Van Patten, C.W.F. Everitt, Possible experiment with two counter-orbiting drag-free satellites to obtain a new test of Einstein’s general theory of relativity and improved measurements in geodesy. Phys. Rev. Lett. 36(12), 629–632 (1976a)

    Article  ADS  Google Scholar 

  • R.A. Van Patten, C.W.F. Everitt, A possible experiment with two counter-rotating drag-free satellites to obtain a new test of Einstein’s general theory of relativity and improved measurements in geodesy. Celest. Mech. Dyn. Astron. 13(4), 429–447 (1976b)

    Google Scholar 

  • F. Vespe, The perturbations of Earth penumbra on LAGEOS II perigee and the measurement of Lense-Thirring gravitomagnetic effect. Adv. Space Res. 23(4), 699–703 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Iorio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iorio, L. An Assessment of the Systematic Uncertainty in Present and Future Tests of the Lense-Thirring Effect with Satellite Laser Ranging. Space Sci Rev 148, 363–381 (2009). https://doi.org/10.1007/s11214-008-9478-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-008-9478-1

Keywords

PACS

Navigation