Skip to main content
Log in

Impacts on Proton Fluxes Observed During Different Interplanetary Conditions

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs) are the major characteristic events of the solar wind (SW). We used proton flux data with different energy levels provided by the Low Energy Magnetic Spectrometers (LEMS) 120 system of the Electron, Proton and Alpha Monitor (EPAM) for studying different ICME-driven and CIR-driven storms. Our main aim was to find, from the observational results, the nature of the proton flux during solar storms driven by different mechanisms that, in our cases, are related to ICMEs and CIRs, in the interplanetary regions. We analyzed the different parameters provided by the LEMS 120 system and compared them during the different storm types and during a selected quietest day as well. We studied four events: a geomagnetically quiet day, two ICME-driven storms and one CIR-driven storm. We also analyzed the interplanetary magnetic field (IMF) magnitude (\(B_{\mathrm{mag}}\)) and the different SW parameters during all these events. We observed that both the prolonged particle precipitations during CIRs and the intense particle precipitations during ICMEs result in the different nature of the fluxes with different energy levels compared with other parameters such as \(B_{\mathrm{mag}}\), and the SW velocity (\(V_{\mathrm{sw}}\)). Our quiet-period results show that there is a strong correlation between the higher energy proton fluxes and \(B_{\mathrm{mag}}\) and \(V_{\mathrm{sw}}\) and a weak correlation in the case of lower energy protons. Our storm-time results demonstrate that when the storm is either driven by ICMEs or CIRs, the lower energy protons also starts to show positive correlations with \(B_{\mathrm{mag}}\) and \(V_{\mathrm{sw}}\) with a 0 min time lag (TA) during ICMEs and with a \({\approx}\,{-}100~\mbox{min}\) TA during CIRs. During the quiet day, the proton flux observed was due to the perturbations created by ionization and the higher energy of the protons sufficiently weakened. Whereas, the CME speed, the preceding CMEs, and the presence of pre-existing solar energetic particles (SEPs) in the ambient medium, the makeup of CIR-related winds, and the nature of precipitation during both ICMEs and CIRs caused the proton fluxes with different energy levels during storm times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  • Adhikari, B., Baruwal, P., Chapagain, N.P.: 2017, Analysis of supersubstorm events with reference to polar cap potential and polar cap index. Earth Space Sci. 4, 2. DOI .

    Article  ADS  Google Scholar 

  • Adhikari, B., Dahal, S., Chapagain, N.P.: 2017, Study of field-aligned current (FAC), interplanetary electric field component (\(E_{y}\)), interplanetary magnetic field component (\(B _{z}\)), and northward (\(x\)) and eastward (\(y\)) components of geomagnetic field during supersubstorm. Earth Space Sci. 4, 257. DOI .

    Article  Google Scholar 

  • Adhikari, B., Sapkota, N., Baruwal, P., Chapagain, N.P., Braga, C.R.: 2017, Impacts on cosmic-ray intensity observed during geomagnetic disturbances. Solar Phys. 292(10), 149. DOI .

    Article  ADS  Google Scholar 

  • Adhikari, B., Dahal, S., Sapkota, N., Baruwal, P., Bhattarai, B., Khanal, K., Chapagain, N.P.: 2018, Field aligned current and polar cap potential and geomagnetic disturbances: a review of cross correlation analysis. Earth Space Sci. 5(9), 440. DOI .

    Article  ADS  Google Scholar 

  • Alves, M.V., Echer, E., Gonzalez, W.D.: 2006, Geoeffectiveness of corotating interaction regions as measured by Dst index. J. Geophys. Res. 111(A7), A07S05. DOI .

    Article  ADS  Google Scholar 

  • Barbas de Haro, B.F., Elias, A.G., Cnossen, I., de Artigas, M.Z.: 2013, Long-term changes in solar quiet (Sq) geomagnetic variations related to Earth’s magnetic field secular variation. J. Geophys. Res. Space Phys. 118(6), 3712. DOI .

    Article  ADS  Google Scholar 

  • Beutier, T., Boscher, D., France, M.: 1995, SALAMMBO: a three-dimensional simulation of the proton radiation belt. J. Geophys. Res. 100(A9), 17181. DOI .

    Article  ADS  Google Scholar 

  • Bolaji, O.S., Adimula, I.A., Adeniyi, J.O., Yumoto, K.: 2013, Variability of horizontal magnetic field intensity over Nigeria during low solar activity. Earth Moon Planets 110(1–2), 91. DOI .

    Article  ADS  Google Scholar 

  • Borovsky, J.E.: 2016, The plasma structure of coronal hole solar wind: origins and evolution. J. Geophys. Res. 121(6), 5055. DOI .

    Article  Google Scholar 

  • Borovsky, J.E., Denton, M.H.: 2006, Differences between CME-driven storms and CIR-driven storms. J. Geophys. Res. 111(A7), A07S08. DOI .

    Article  ADS  Google Scholar 

  • Brown, R.R., Driatsky, V.M.: 1973, Further studies of ionospheric and geomagnetic effects of sudden impulses. Planet. Space Sci. 21(11), 1931. DOI .

    Article  ADS  Google Scholar 

  • Brown, R.R., Hartz, T.R., Landmark, B., Leinbach, H., Ortner, J.: 1961, Large-scale electron bombardment of the atmosphere at the sudden commencement of a geomagnetic storm. J. Geophys. Res. 66(4), 1035. DOI .

    Article  ADS  Google Scholar 

  • Brown, R.R., Leinbach, H., Akasofu, S.I., Driatsky, V.M., Schmidt, R.J.: 1972, Quadruple conjugate pair observations of the sudden commencement absorption event on June 17. J. Geophys. Res. 77(28), 5602. DOI . 1965.

    Article  ADS  Google Scholar 

  • Cane, H.V., Reames, D.V., Rosenvinge, T.T.: 1988, The role of interplanetary shocks in the longitude distribution of solar energetic particles. J. Geophys. Res. 93(A9), 9555. DOI .

    Article  ADS  Google Scholar 

  • Cane, H.V., Sheeley, N.R., Howard, R.A.: 1987, Energetic interplanetary shocks, radio emission, and coronal mass ejections. J. Geophys. Res. 92(A9), 9869. DOI .

    Article  ADS  Google Scholar 

  • Chapman, S.: 1919, I. The solar and lunar diurnal variations of terrestrial magnetism. Phil. Trans. Roy. Soc. London 218(561–569), 1. DOI .

    Article  ADS  Google Scholar 

  • Chupp, E.L.: 1988, Solar neutron observations and their relation to solar flare acceleration problems. Solar Phys. 118(1–2), 137. DOI .

    Article  ADS  Google Scholar 

  • Cornwall, J.M.: 1972, Radial diffusion of ionized helium and protons: a probe for magnetospheric dynamics. J. Geophys. Res. 77(10), 1756. DOI .

    Article  ADS  Google Scholar 

  • Dmitriev, A.V., Crosby, N.B., Chao, J.K.: 2005, Interplanetary sources of space weather disturbances in 1997 to 2000. Adv. Space Res. 3(3), 1. DOI .

    Article  Google Scholar 

  • Emslie, A.G., Dennis, B.R., Shih, A.Y., Chamberlin, P.C., Mewaldt, R.A., Moore, C.S., et al.: 2012, Global energetics of thirty-eight large solar eruptive events. Astrophys. J. 759(1), 71. DOI .

    Article  ADS  Google Scholar 

  • Fan, C.Y., Pick, M., Pyle, R., Simpson, J.A., Smith, D.R.: 1968, Protons associated with centers of solar activity and their propagation in interplanetary magnetic field regions corotating with the Sun. J. Geophys. Res. 73(5), 1555. DOI .

    Article  ADS  Google Scholar 

  • Finch, I., Lockwood, M.: 2007, Solar wind-magnetosphere coupling functions on timescales of 1 day to 1 year. Ann. Geophys. 25, 495. DOI .

    Article  ADS  Google Scholar 

  • Georgoulis, M.K., Papaioannou, A., Sandberg, I., Anastasiadis, A., Daglis, I.A., Rodríguez-Gasén, R., et al.: 2018, Analysis and interpretation of inner-heliospheric SEP events with the ESA Standard Radiation Environment Monitor (SREM) onboard the INTEGRAL and Rosetta missions. J. Space Weather Space Clim. 8, A40. DOI .

    Article  Google Scholar 

  • Gleisner, H., Watermann, J.: 2006, Solar energetic particle flux enhancement as an indicator of halo coronal mass ejection geoeffectiveness. Adv. Space Res. 4(6), 1. DOI .

    Article  Google Scholar 

  • Gold, R.E., Krimigis, S.M., Hawkins, S.E., Haggerty, D.L., Lohr, D.A., Fiore, E., et al.: 1998, Electron, Proton, and Alpha Monitor on the Advanced Composition Explorer spacecraft. Space Sci. Rev. 86(1–4), 541. DOI .

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Tsurutani, B.T., De Gonzalez, A.L.C.: 1999, Interplanetary origin of geomagnetic storms. Space Sci. Rev. 88(3–4), 529. DOI .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Kaiser, M.L., Howard, R.A.: 2003, Coronal mass ejection interaction and particle acceleration during the 2001 April 14–15 events. Adv. Space Res. 32(12), 2613. DOI .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Nunes, S., Yashiro, S., Howard, R.A.: 2004, Variability of solar eruptions during cycle 23. Adv. Space Res. 34(2), 391. DOI .

    Article  ADS  Google Scholar 

  • Gosling, J.T., Pizzo, V.J.: 1999, Formation and evolution of corotating interaction regions and their three-dimensional structure. In: Corotating Interaction Regions, Springer, Dordrecht, 21. DOI .

    Chapter  Google Scholar 

  • Guido, R.M.D.: 2016, Coronal mass ejections during geomagnetic storms on Earth. J. Astrophys. Astron. 5(2), 19. DOI .

    Article  Google Scholar 

  • Hudson, H.S.: 2011, Global properties of solar flares. Space Sci. Rev. 158(1), 5. DOI .

    Article  ADS  Google Scholar 

  • Illing, R.M.E., Hundhausen, A.T.: 1986, Disruption of a coronal streamer by an eruptive prominence and coronal mass ejection. J. Geophys. Res. 91(A10), 10951. DOI .

    Article  ADS  Google Scholar 

  • Kahler, S.W., Hildner, E., Van Hollebeke, M.A.I.: 1978, Prompt solar proton events and coronal mass ejections. Solar Phys. 57(2), 429. DOI .

    Article  ADS  Google Scholar 

  • Katz, R.W.: 1988, Use of cross correlations in the search for teleconnections. Int. J. Climatol. 8(3), 241. DOI .

    Article  Google Scholar 

  • Kennel, C.F., Scarf, F.L., Coroniti, F.V., Russell, C.T., Wenzel, K.P., Sanderson, T.R., et al.: 1984, Plasma and energetic particle structure upstream of a quasi-parallel interplanetary shock. J. Geophys. Res. 89(A7), 5419. DOI .

    Article  ADS  Google Scholar 

  • Kozyra, J.U., Rasmussen, C.E., Miller, R.H., Lyons, L.R.: 1994, Interaction of ring current and radiation belt protons with ducted plasmaspheric hiss: 1. Diffusion coefficients and timescales. J. Geophys. Res. 99(A3), 4069. DOI .

    Article  ADS  Google Scholar 

  • Lazutin, L.L., Kuznetsov, S.N., Podorol’skii, A.N.: 2007, Dynamics of the radiation belt formed by solar protons during magnetic storms. Geomagn. Aeron. 47(2), 175. DOI .

    Article  ADS  Google Scholar 

  • Longden, N., Denton, M.H., Honary, F.: 2008, Particle precipitation during ICME-driven and CIR-driven geomagnetic storms. J. Geophys. Res. 113(A6), A06205. DOI .

    Article  ADS  Google Scholar 

  • Malandraki, O.E., Lario, D., Lanzerotti, L.J., Sarris, E.T., Geranios, A., Tsiropoula, G.: 2005, October/November 2003 interplanetary coronal mass ejections: ACE/EPAM solar energetic particle observations. J. Geophys. Res. 110(A9), A09S06. DOI .

    Article  ADS  Google Scholar 

  • McCracken, K.G., Rao, U.R., Bukata, R.P., Keath, E.: 1971, The decay phase of solar flare events. Solar Phys. 18(1), 100. DOI .

    Article  ADS  Google Scholar 

  • Mewaldt, R.A., Stone, E.C., Vogt, R.E.: 1979, Characteristics of the spectra of protons and alpha particles in recurrent events at 1 AU. Geophys. Res. Lett. 6(7), 589. DOI .

    Article  ADS  Google Scholar 

  • Nakada, M.P., Dungey, J.W., Hess, W.N.: 1965, On the origin of outer-belt protons: 1. J. Geophys. Res. 70(15), 3529. DOI .

    Article  ADS  Google Scholar 

  • Ngwira, C.M., Pulkkinen, A., Wilder, F.D., Crowley, G.: 2013, Extended study of extreme geoelectric field event scenarios for geomagnetically induced current applications. Adv. Space Res. 11(3), 121. DOI .

    Article  Google Scholar 

  • Palmer, I.D., Gosling, J.T.: 1978, Shock-associated energetic proton events at large heliocentric distances. J. Geophys. Res. 83(A5), 2037. DOI .

    Article  ADS  Google Scholar 

  • Richardson, I.G.: 2004, Energetic particles and corotating interaction regions in the solar wind. Space Sci. Rev. 111(3–4), 267. DOI .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cliver, E.W., Cane, H.V.: 2000, Sources of geomagnetic activity over the solar cycle: relative importance of coronal mass ejections, high-speed streams, and slow solar wind. J. Geophys. Res. 105(A8), 18203. DOI .

    Article  ADS  Google Scholar 

  • Sergeev, V.A., Chernyaeva, S.A., Apatenkov, S.V., Ganushkina, N.Y., Dubyagin, S.V.: 2015, Energy-latitude dispersion patterns near the isotropy boundaries of energetic protons. Ann. Geophys. 33, 1059. DOI .

    Article  ADS  Google Scholar 

  • Sheeley, N.R., Howard, R.A., Koomen, M.J., Michels, D.J., Schwenn, R., Muehlhaeuser, K.H., Rosenbauer, H.: 1985, Coronal mass ejections and interplanetary shocks. J. Geophys. Res. 90(A1), 163. DOI .

    Article  ADS  Google Scholar 

  • Shibata, K., Magara, T.: 2011, Solar flares: magnetohydrodynamic processes. Solar Phys. 8(1), 6. DOI .

    Article  Google Scholar 

  • Smith, E.J., Wolfe, J.H.: 1976, Observations of interaction regions and corotating shocks between one and five AU: Pioneers 10 and 11. Geophys. Res. Lett. 3(3), 137. DOI .

    Article  ADS  Google Scholar 

  • Smolin, S.V.: 2010, Effect of magnetospheric convection on the energy distribution of protons from the Earth radiation belts. Geomagn. Aeron. 50(3), 298. DOI .

    Article  ADS  Google Scholar 

  • Søraas, F., Aarsnes, K., Lundblad, J., Evans, D.S.: 1999, Enhanced pitch angle scattering of protons at mid-latitudes during geomagnetic storms. Phys. Chem. Earth, Part C Solar-Terr. Planet. Sci. 24(1–3), 287. DOI .

    Article  Google Scholar 

  • Spjeldvik, W.N.: 1977, Equilibrium structure of equatorially mirroring radiation belt protons. J. Geophys. Res. 82(19), 2801. DOI .

    Article  ADS  Google Scholar 

  • Stauning, P.: 1996, Investigations of ionospheric radio wave absorption processes using imaging riometer techniques. J. Atmos. Terr. Phys. 58(6), 753. DOI .

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Lin, R.P.: 1985, Acceleration of \({>}\,47~\mbox{keV}\) ions and \({>}\,2~\mbox{keV}\) electrons by interplanetary shocks at 1 AU. J. Geophys. Res. 90(A1), 1. DOI .

    Article  Google Scholar 

  • Tsurutani, B.T., Gould, T., Goldstein, B.E., Gonzalez, W.D., Sugiura, M.: 1990, Interplanetary Alfvén waves and auroral (substorm) activity: IMP 8. J. Geophys. Res. 95, 2241. DOI .

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L., Guarnieri, F.L., Gopalswamy, N., Grande, M., et al.: 2006, Corotating solar wind streams and recurrent geomagnetic activity: a review. J. Geophys. Res. 111(A7), A07S01. DOI .

    Article  Google Scholar 

  • Tsurutani, B.T., Verkhoglyadova, O.P., Mannucci, A.J., Lakhina, G.S., Li, G., Zank, G.P.: 2009, A brief review of “solar flare effects” on the ionosphere. Radio Sci. 44(1), RS0A17. DOI .

    Article  Google Scholar 

  • Tylka, A.J., Lee, M.A.: 2006, A model for spectral and compositional variability at high energies in large, gradual solar particle events. Astrophys. J. 646(2), 1319. DOI .

    Article  ADS  Google Scholar 

  • Tylka, A.J., Cohen, C.M.S., Dietrich, W.F., Lee, M.A., Maclennan, C.G., Mewaldt, R.A., et al.: 2005, Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events. Astrophys. J. 625(1), 474. DOI .

    Article  ADS  Google Scholar 

  • Vacaresse, A., Boscher, D., Bourdarie, S., Blanc, M., Sauvaud, J.A.: 1999, Modeling the high-energy proton belt. J. Geophys. Res. 104(A12), 28601. DOI .

    Article  ADS  Google Scholar 

  • Yizengaw, E., Moldwin, M.B., Komjathy, A., Mannucci, A.J.: 2006, Unusual topside ionospheric density response to the November 2003 superstorm. J. Geophys. Res. 111(A2), A02308. DOI .

    Article  ADS  Google Scholar 

  • Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123(1–3), 31. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to the OMNI Database for providing the data. The interplanetary magnetic field magnitude data and solar wind parameters for this study were obtained from https://omniweb.gsfc.nasa.gov/ . We thank the ACE instrument team and the ACE Science Center for providing the ACE data. We downloaded the proton flux data from http://www.srl.caltech.edu/ACE/ .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binod Adhikari.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhikari, B., Adhikari, N., Aryal, B. et al. Impacts on Proton Fluxes Observed During Different Interplanetary Conditions. Sol Phys 294, 61 (2019). https://doi.org/10.1007/s11207-019-1450-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1450-6

Keywords

Navigation