Skip to main content
Log in

Non-neutralized Electric Currents in Solar Active Regions and Flare Productivity

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We explore the association of non-neutralized currents with solar flare occurrence in a sizable sample of observations, aiming to show the potential of such currents in solar flare prediction. We used the high-quality vector magnetograms that are regularly produced by the Helioseismic Magnetic Imager, and more specifically, the Space weather HMI Active Region Patches (SHARP). Through a newly established method that incorporates detailed error analysis, we calculated the non-neutralized currents contained in active regions (AR). Two predictors were produced, namely the total and the maximum unsigned non-neutralized current. Both were tested in AR time-series and a representative sample of point-in-time observations during the interval 2012 – 2016. The average values of non-neutralized currents in flaring active regions are higher by more than an order of magnitude than in non-flaring regions and correlate very well with the corresponding flare index. The temporal evolution of these parameters appears to be connected to physical processes, such as flux emergence and/or magnetic polarity inversion line formation, that are associated with increased solar flare activity. Using Bayesian inference of flaring probabilities, we show that the total unsigned non-neutralized current significantly outperforms the total unsigned magnetic flux and other well-established current-related predictors. It therefore shows good prospects for inclusion in an operational flare-forecasting service. We plan to use the new predictor in the framework of the FLARECAST project along with other highly performing predictors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Notes

  1. http://www.ngdc.noaa.gov/stp/satellite/goes/ .

References

  • Abramenko, V.I.: 2005, Relationship between magnetic power spectrum and flare productivity in solar active regions. Astrophys. J. 629, 1141. DOI . ADS .

    Article  ADS  Google Scholar 

  • Alissandrakis, C.E.: 1981, On the computation of constant alpha force-free magnetic field. Astron. Astrophys. 100, 197. ADS .

    ADS  Google Scholar 

  • Barnes, G., Longcope, D.W., Leka, K.D.: 2005, Implementing a magnetic charge topology model for solar active regions. Astrophys. J. 629, 561. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bobra, M.G., Couvidat, S.: 2015, Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. Astrophys. J. 798, 135. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bobra, M.G., Ilonidis, S.: 2016, Predicting coronal mass ejections using machine learning methods. Astrophys. J. 821, 127. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bobra, M.G., Sun, X., Hoeksema, J.T., Turmon, M., Liu, Y., Hayashi, K., Barnes, G., Leka, K.D.: 2014, The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: SHARPs – space-weather HMI active region patches. Solar Phys. 289, 3549. DOI . ADS .

    Article  ADS  Google Scholar 

  • Canfield, R.C., de La Beaujardiere, J.-F., Fan, Y., Leka, K.D., McClymont, A.N., Metcalf, T.R., Mickey, D.L., Wuelser, J.-P., Lites, B.W.: 1993, The morphology of flare phenomena, magnetic fields, and electric currents in active regions. I – Introduction and methods. Astrophys. J. 411, 362. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chintzoglou, G., Patsourakos, S., Vourlidas, A.: 2015, Formation of magnetic flux ropes during a confined flaring well before the onset of a pair of major coronal mass ejections. Astrophys. J. 809, 34. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dalmasse, K., Aulanier, G., Démoulin, P., Kliem, B., Török, T., Pariat, E.: 2015, The origin of net electric currents in solar active regions. Astrophys. J. 810, 17. DOI . ADS .

    Article  ADS  Google Scholar 

  • Falconer, D.A.: 2001, A prospective method for predicting coronal mass ejections from vector magnetograms. J. Geophys. Res. 106, 25185. DOI . ADS .

    Article  ADS  Google Scholar 

  • Falconer, D.A., Moore, R.L., Gary, G.A.: 2002, Correlation of the coronal mass ejection productivity of solar active regions with measures of their global nonpotentiality from vector magnetograms: baseline results. Astrophys. J. 569, 1016. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fletcher, L., Dennis, B.R., Hudson, H.S., Krucker, S., Phillips, K., Veronig, A., Battaglia, M., Bone, L., Caspi, A., Chen, Q., Gallagher, P., Grigis, P.T., Ji, H., Liu, W., Milligan, R.O., Temmer, M.: 2011, An observational overview of solar flares. Space Sci. Rev. 159, 19. DOI . ADS .

    Article  ADS  Google Scholar 

  • Georgoulis, M.K.: 2012a, Are solar active regions with major flares more fractal, multifractal, or turbulent than others? Solar Phys. 276, 161. DOI . ADS .

    Article  ADS  Google Scholar 

  • Georgoulis, M.K.: 2012b, On our ability to predict major solar flares. Astrophys. Space Sci. Proc. 30, 93. DOI . ADS .

    Article  ADS  Google Scholar 

  • Georgoulis, M.K.: 2017, The ambivalent role of field-aligned electric currents in the solar atmosphere. In: Keiling, A., Marghitu, O., Wheatland, M. (eds.) Electric Currents in Geospace and Beyond, AGU Monographs.

    Google Scholar 

  • Georgoulis, M.K., Rust, D.M.: 2007, Quantitative forecasting of major solar flares. Astrophys. J. Lett. 661, L109. DOI . ADS .

    Article  ADS  Google Scholar 

  • Georgoulis, M.K., Titov, V.S., Mikić, Z.: 2012, Non-neutralized electric current patterns in solar active regions: origin of the shear-generating Lorentz force. Astrophys. J. 761, 61. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gosain, S., Démoulin, P., López Fuentes, M.: 2014, Distribution of electric currents in sunspots from photosphere to corona. Astrophys. J. 793, 15. DOI . ADS .

    Article  ADS  Google Scholar 

  • Inoue, S., Hayashi, K., Magara, T., Choe, G.S., Park, Y.D.: 2015, Magnetohydrodynamic simulation of the X2.2 solar flare on 2011 February 15. II. Dynamics connecting the solar flare and the coronal mass ejection. Astrophys. J. 803, 73. DOI . ADS .

    Article  ADS  Google Scholar 

  • Janvier, M., Aulanier, G., Bommier, V., Schmieder, B., Démoulin, P., Pariat, E.: 2014, Electric currents in flare ribbons: observations and three-dimensional standard model. Astrophys. J. 788, 60. DOI . ADS .

    Article  ADS  Google Scholar 

  • Leka, K.D., Barnes, G.: 2003a, Photospheric magnetic field properties of flaring versus flare-quiet active regions. I. Data, general approach, and sample results. Astrophys. J. 595, 1277. DOI . ADS .

    Article  ADS  Google Scholar 

  • Leka, K.D., Barnes, G.: 2003b, Photospheric magnetic field properties of flaring versus flare-quiet active regions. II. Discriminant analysis. Astrophys. J. 595, 1296. DOI . ADS .

    Article  ADS  Google Scholar 

  • Leka, K.D., Barnes, G.: 2007, Photospheric magnetic field properties of flaring versus flare-quiet active regions. IV. A statistically significant sample. Astrophys. J. 656, 1173. DOI . ADS .

    Article  ADS  Google Scholar 

  • Leka, K.D., Canfield, R.C., McClymont, A.N., van Driel-Gesztelyi, L.: 1996, Evidence for current-carrying emerging flux. Astrophys. J. 462, 547. DOI . ADS .

    Article  ADS  Google Scholar 

  • McClymont, A.N., Jiao, L., Mikic, Z.: 1997, Problems and progress in computing three-dimensional coronal active region magnetic fields from boundary data. Solar Phys. 174, 191. DOI . ADS .

    Article  ADS  Google Scholar 

  • Melrose, D.B.: 1991, Neutralized and unneutralized current patterns in the solar corona. Astrophys. J. 381, 306. DOI . ADS .

    Article  ADS  Google Scholar 

  • Melrose, D.B.: 1995, Current paths in the corona and energy release in solar flares. Astrophys. J. 451, 391. DOI . ADS .

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1979, Cosmical Magnetic Fields: Their Origin and Their Activity. ADS .

    Google Scholar 

  • Parker, E.N.: 1996, Inferring mean electric currents in unresolved fibril magnetic fields. Astrophys. J. 471, 485. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ravindra, B., Venkatakrishnan, P., Tiwari, S.K., Bhattacharyya, R.: 2011, Evolution of currents of opposite signs in the flare-productive solar active region NOAA 10930. Astrophys. J. 740, 19. DOI . ADS .

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schrijver, C.J.: 2007, A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. Astrophys. J. Lett. 655, L117. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schrijver, C.J.: 2016, The nonpotentiality of coronae of solar active regions, the dynamics of the surface magnetic field, and the potential for large flares. Astrophys. J. 820, 103. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schrijver, C.J., DeRosa, M.L., Metcalf, T., Barnes, G., Lites, B., Tarbell, T., McTiernan, J., Valori, G., Wiegelmann, T., Wheatland, M.S., Amari, T., Aulanier, G., Démoulin, P., Fuhrmann, M., Kusano, K., Régnier, S., Thalmann, J.K.: 2008, Nonlinear force-free field modeling of a solar active region around the time of a major flare and coronal mass ejection. Astrophys. J. 675, 1637. DOI . ADS .

    Article  ADS  Google Scholar 

  • Semel, M., Skumanich, A.: 1998, An ambiguity-free determination of \(J_{\mathrm{Z}}\) in solar active regions. Astron. Astrophys. 331, 383. ADS .

    ADS  Google Scholar 

  • Shibata, K., Magara, T.: 2011, Solar flares: magnetohydrodynamic processes. Living Rev. Solar Phys. 8, 6. DOI . ADS .

    Article  ADS  Google Scholar 

  • Syntelis, P., Gontikakis, C., Patsourakos, S., Tsinganos, K.: 2016, The spectroscopic imprint of the pre-eruptive configuration resulting into two major coronal mass ejections. Astron. Astrophys. 588, A16. DOI . ADS .

    Article  ADS  Google Scholar 

  • Török, T., Leake, J.E., Titov, V.S., Archontis, V., Mikić, Z., Linton, M.G., Dalmasse, K., Aulanier, G., Kliem, B.: 2014, Distribution of electric currents in solar active regions. Astrophys. J. Lett. 782, L10. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vemareddy, P., Venkatakrishnan, P., Karthikreddy, S.: 2015, Flux emergence in the solar active region NOAA 11158: the evolution of net current. Res. Astron. Astrophys. 15, 1547. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wheatland, M.S.: 2000, Are electric currents in solar active regions neutralized? Astrophys. J. 532, 616. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wheatland, M.S.: 2005, Initial test of a Bayesian approach to solar flare prediction. Publ. Astron. Soc. Aust. 22, 153. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wilkinson, L.K., Emslie, A.G., Gary, G.A.: 1992, On neutralized currents in the solar corona. Astrophys. J. Lett. 392, L39. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yang, X., Zhang, H., Gao, Y., Guo, J., Lin, G.: 2012, A statistical study on photospheric magnetic nonpotentiality of active regions and its relationship with flares during Solar Cycles 22 – 23. Solar Phys. 280, 165. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zhang, H.: 1995, Formation of magnetic shear and an electric current system in an emerging flux region Astron. Astrophys. 304, 541. ADS .

    ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referee for constructive comments on the manuscript. This research has been funded by the European Union’s Horizon 2020 research and innovation programme Flare Likelihood And Region Eruption foreCASTing (FLARECAST) project, under grant agreement No. 640216. The data used are courtesy of NASA/SDO, the HMI science team, and the Geostationary Satellite System (GOES) team. This work also used data provided by the MEDOC data and operations center (CNES/CNRS/Univ. Paris-Sud), http://medoc.ias.u-psud.fr/ .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Kontogiannis.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Appendix: Differential Versus Integral Form of Ampère’s Law

Appendix: Differential Versus Integral Form of Ampère’s Law

In the original work of Georgoulis, Titov, and Mikić (2012), the integral form of Ampère’s law was chosen as being more accurate, although more time consuming. To examine the trade-off between speed and accuracy, we used both versions to calculate the total unsigned non-neutralized current for AR 11158. The results are shown in Figure 6, which shows that the two versions produce practically the same results. For the longer part of the time series, currents calculated by the two versions are the same within the uncertainties. For most of the points, the differences are within the error bars, and the two curves differ only at a few points. Overall, the differential form of Ampère’s law produces slightly smoother curves, since it uses a larger number of pixels, which smoothes out differences from image to image (which could be due to noise or errors in the azimuth disambiguation and deprojection). Because it is based on the definition of a “correct” contour around each partition, the integral form is more sensitive to these variations. In view of this result and because the integral form of Ampère’s law is significantly more time consuming, we chose to use the differential form to calculate the electric currents that correspond to each partition.

Figure 6
figure 6

Total non-neutralized current, \(I_{\mathrm{NN},\mathrm{tot}}\) of AR 11158 as a function of time, calculated using the integral (black) and differential (red) form of Ampère’s law.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kontogiannis, I., Georgoulis, M.K., Park, SH. et al. Non-neutralized Electric Currents in Solar Active Regions and Flare Productivity. Sol Phys 292, 159 (2017). https://doi.org/10.1007/s11207-017-1185-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1185-1

Keywords

Navigation