Skip to main content
Log in

Bridging EUV and White-Light Observations to Inspect the Initiation Phase of a “Two-Stage” Solar Eruptive Event

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The initiation phase of coronal mass ejections (CMEs) is a very important aspect of solar physics, as these phenomena ultimately drive space weather in the heliosphere. This phase is known to occur between the photosphere and low corona, where many models introduce an instability and/or magnetic reconnection that triggers a CME, often with associated flaring activity. To this end, it is important to obtain a variety of observations of the low corona to build as clear a picture as possible of the dynamics that occur therein. Here, we combine the EUV imagery of the Sun Watcher using Active Pixel System Detector and Image Processing (SWAP) instrument onboard the Project for Onboard Autonomy (PROBA2) with the white-light imagery of the ground-based Mark-IV K-coronameter (Mk4) at Mauna Loa Solar Observatory (MLSO) to bridge the observational gap that exists between the disk imagery of the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) and the coronal imagery of the Large Angle Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO). Methods of multiscale image analysis were applied to the observations to better reveal the coronal signal while suppressing noise and other features. This allowed an investigation into the initiation phase of a CME that was driven by a rising flux-rope structure from a “two-stage” flaring event underlying an extended helmet streamer. It was found that the initial outward motion of the erupting loop system in the EUV observations coincided with the first X-ray flare peak and led to a plasma pile-up of the white-light CME core material. The characterized CME core then underwent a strong jerk in its motion, as the early acceleration increased abruptly, simultaneously with the second X-ray flare peak. The overall system expanded into the helmet streamer to become the larger CME structure observed in the LASCO coronagraph images, which later became concave-outward in shape. Theoretical models for the event are discussed in light of these unique observations, and it is concluded that the formation of either a kink-unstable or torus-unstable flux rope may be the likeliest scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Notes

  1. http://alshamess.ifa.hawaii.edu/CORIMP/ .

  2. http://www.cosmo.ucar.edu/kcoronagraph.html .

References

  • Amari, T., Luciani, J.F., Aly, J.J., Mikic, Z., Linker, J.: 2003, Coronal mass ejection: Initiation, magnetic helicity, and flux ropes. II. Turbulent diffusion-driven evolution. Astrophys. J. 595, 1231.

    Article  ADS  Google Scholar 

  • Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: 1999, A model for solar coronal mass ejections. Astrophys. J. 510, 485.

    Article  ADS  Google Scholar 

  • Aulanier, G., Török, T., Démoulin, P., DeLuca, E.E.: 2010, Formation of torus-unstable flux ropes and electric currents in erupting sigmoids. Astrophys. J. 708, 314.

    Article  ADS  Google Scholar 

  • Bain, H.M., Krucker, S., Glesener, L., Lin, R.P.: 2012, Radio imaging of shock-accelerated electrons associated with an erupting plasmoid on 2010 November 3. Astrophys. J. 750, 44.

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357.

    Article  ADS  Google Scholar 

  • Byrne, J.P., Gallagher, P.T., McAteer, R.T.J., Young, C.A.: 2009, The kinematics of coronal mass ejections using multiscale methods. Astron. Astrophys. 495, 325.

    Article  ADS  Google Scholar 

  • Byrne, J.P., Morgan, H., Habbal, S.R., Gallagher, P.T.: 2012, Automatic detection and tracking of coronal mass ejections. II. Multiscale filtering of coronagraph images. Astrophys. J. 752, 145.

    Article  ADS  Google Scholar 

  • Byrne, J.P., Long, D.M., Gallagher, P.T., Bloomfield, D.S., Maloney, S.A., McAteer, R.T.J., Morgan, H., Habbal, S.R.: 2013, Improved methods for determining the kinematics of coronal mass ejections and coronal waves. Astron. Astrophys. 557, A96.

    Article  ADS  Google Scholar 

  • Byrne, J.P., Maloney, S.A., McAteer, R.T.J., Refojo, J.M., Gallagher, P.T.: 2010, Propagation of an Earth-directed coronal mass ejection in three dimensions. Nat. Commun. 1, 74.

    Article  ADS  Google Scholar 

  • Carley, E.P., Long, D.M., Byrne, J.P., Zucca, P., Bloomfield, D.S., McCauley, J., Gallagher, P.T.: 2013, Quasiperiodic acceleration of electrons by a plasmoid-driven shock in the solar atmosphere. Nat. Phys. 9, 811.

    Article  Google Scholar 

  • Carmichael, H.: 1964, A process for flares. NASA Spec. Publ. 50, 451.

    ADS  Google Scholar 

  • Chen, J.: 1996, Theory of prominence eruption and propagation: Interplanetary consequences. J. Geophys. Res. 101, 27499.

    Article  ADS  Google Scholar 

  • Chen, P.F.: 2011, Coronal mass ejections: Models and their observational basis. Living Rev. Solar Phys. 8, 1.

    Article  ADS  MATH  Google Scholar 

  • Cremades, H., Bothmer, V.: 2004, On the three-dimensional configuration of coronal mass ejections. Astron. Astrophys. 422, 307.

    Article  ADS  Google Scholar 

  • Dauphin, C., Vilmer, N., Krucker, S.: 2006, Observations of a soft X-ray rising loop associated with a type II burst and a coronal mass ejection in the 03 November 2003 X-ray flare. Astron. Astrophys. 455, 339.

    Article  ADS  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: An overview. Solar Phys. 162, 1.

    Article  ADS  Google Scholar 

  • Druckmüllerová, H., Morgan, H., Habbal, S.R.: 2011, Enhancing coronal structures with the Fourier normalizing-radial-graded filter. Astrophys. J. 737, 88.

    Article  ADS  Google Scholar 

  • Elmore, D.F., Burkepile, J.T., Darnell, J.A., Lecinski, A.R., Stanger, A.L.: 2003, Calibration of a ground-based solar coronal polarimeter. In: Fineschi, S. (ed.) Polarimetry in Astronomy, Proc. SPIE 4843, 66.

    Chapter  Google Scholar 

  • Filippov, B., Koutchmy, S.: 2008, Causal relationships between eruptive prominences and coronal mass ejections. Ann. Geophys. 26, 3025.

    Article  ADS  Google Scholar 

  • Forbes, T.G., Priest, E.R.: 1995, Photospheric magnetic field evolution and eruptive flares. Astrophys. J. 446, 377.

    Article  ADS  Google Scholar 

  • Gallagher, P.T., Young, C.A., Byrne, J.P., McAteer, R.T.J.: 2011, Coronal mass ejection detection using wavelets, curvelets and ridgelets: Applications for space weather monitoring. Adv. Space Res. 47, 2118.

    Article  ADS  Google Scholar 

  • Gibson, S.E., Foster, D., Burkepile, J., de Toma, G., Stanger, A.: 2006, The calm before the storm: The link between quiescent cavities and coronal mass ejections. Astrophys. J. 641, 590.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Shimojo, M., Lu, W., Yashiro, S., Shibasaki, K., Howard, R.A.: 2003, Prominence eruptions and coronal mass ejection: A statistical study using microwave observations. Astrophys. J. 586, 562.

    Article  ADS  Google Scholar 

  • Halain, J.-P., Berghmans, D., Seaton, D.B., Nicula, B., De Groof, A., Mierla, M., Mazzoli, A., Defise, J.-M., Rochus, P.: 2013, The SWAP EUV imaging telescope. Part II: In-flight performance and calibration. Solar Phys. 286, 67.

    Article  ADS  Google Scholar 

  • Hirayama, T.: 1974, Theoretical model of flares and prominences. I: Evaporating flare model. Solar Phys. 34, 323.

    Article  ADS  Google Scholar 

  • Howard, T.A., Harrison, R.A.: 2013, Stealth coronal mass ejections: A perspective. Solar Phys. 285, 269.

    Article  ADS  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St. Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67.

    Article  ADS  Google Scholar 

  • Hundhausen, A.J.: 1993, Sizes and locations of coronal mass ejections – SMM observations from 1980 and 1984 – 1989. J. Geophys. Res. 98, 13177.

    Article  ADS  Google Scholar 

  • Illing, R.M.E., Hundhausen, A.J.: 1986, Disruption of a coronal streamer by an eruptive prominence and coronal mass ejection. J. Geophys. Res. 91, 10951.

    Article  ADS  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: An introduction. Space Sci. Rev. 136, 5.

    Article  ADS  Google Scholar 

  • Kliem, B., Török, T.: 2006, Torus instability. Phys. Rev. Lett. 96(25), 255002.

    Article  ADS  Google Scholar 

  • Klimchuk, J.A.: 2001, Theory of coronal mass ejections. In: Song, P., Singer, H., Siscoe, G. (eds.) Space Weather, Geophys. Monogr. 125, Am. Geophys. Union, Washington, 143.

    Google Scholar 

  • Kopp, R.A., Pneuman, G.W.: 1976, Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Phys. 50, 85.

    Article  ADS  Google Scholar 

  • Krall, J., Chen, J., Duffin, R.T., Howard, R.A., Thompson, B.J.: 2001, Erupting solar magnetic flux ropes: Theory and observation. Astrophys. J. 562, 1045.

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17.

    Article  ADS  Google Scholar 

  • Lin, J., Li, J., Forbes, T.G., Ko, Y., Raymond, J.C., Vourlidas, A.: 2007, Features and properties of coronal mass ejection/flare current sheets. Astrophys. J. Lett. 658, L123.

    Article  ADS  Google Scholar 

  • Liu, Y.D., Luhmann, J.G., Kajdič, P., Kilpua, E.K.J., Lugaz, N., Nitta, N.V., Möstl, C., Lavraud, B., Bale, S.D., Farrugia, C.J., Galvin, A.B.: 2014, Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections. Nat. Commun. 5, 3481.

    ADS  Google Scholar 

  • Lockwood, M., Hapgood, M.: 2007, The rough guide to the Moon and Mars. Astron. Geophys. 48(6), 060000.

    Article  Google Scholar 

  • Lynch, B.J., Antiochos, S.K., DeVore, C.R., Luhmann, J.G., Zurbuchen, T.H.: 2008, Topological evolution of a fast magnetic breakout CME in three dimensions. Astrophys. J. 683, 1192.

    Article  ADS  Google Scholar 

  • Moore, R.L., Labonte, B.J.: 1980, The filament eruption in the 3B flare of July 29, 1973 – Onset and magnetic field configuration. In: Dryer, M., Tandberg-Hanssen, E. (eds.) Solar and Interplanetary Dynamics, IAU Symp. 91, 207.

    Chapter  Google Scholar 

  • Morgan, H., Byrne, J.P., Habbal, S.R.: 2012, Automatically detecting and tracking coronal mass ejections. I. Separation of dynamic and quiescent components in coronagraph images. Astrophys. J. 752, 144.

    Article  ADS  Google Scholar 

  • Morgan, H., Druckmüller, M.: 2014, Multi-scale Gaussian normalization for solar image processing. Solar Phys. 289, 2945.

    Article  ADS  Google Scholar 

  • Morgan, H., Habbal, S.R., Woo, R.: 2006, The depiction of coronal structure in white-light images. Solar Phys. 236, 263.

    Article  ADS  Google Scholar 

  • Morgan, H., Jeska, L., Leonard, D.: 2013, The expansion of active regions into the extended solar corona. Astrophys. J. Suppl. 206, 19.

    Article  ADS  Google Scholar 

  • Pérez-Suárez, D., Higgins, P.A., Bloomfield, D.S., McAteer, R.T.J., Krista, L.D., Byrne, J.P., Gallagher, P.T.: 2011, Automated solar feature detection for space weather applications. In: Qahwaji, R., Green, R., Haines, E.L. (eds.) Applied Signal and Image Processing: Multidisciplinary Advancements, IGI Global, Hershey, 207.

    Chapter  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3.

    Article  ADS  Google Scholar 

  • Prangé, R., Pallier, L., Hansen, K.C., Howard, R., Vourlidas, A., Courtin, R., Parkinson, C.: 2004, An interplanetary shock traced by planetary auroral storms from the Sun to Saturn. Nature 432, 78.

    Article  ADS  Google Scholar 

  • Priest, E.R., Forbes, T.G.: 2002, The magnetic nature of solar flares. Astron. Astrophys. Rev. 10, 313.

    Article  ADS  Google Scholar 

  • Raftery, C.L., Gallagher, P.T., McAteer, R.T.J., Lin, C.-H., Delahunt, G.: 2010, Evidence for internal tether-cutting in a flare/coronal mass ejection observed by MESSENGER, RHESSI, and STEREO. Astrophys. J. 721, 1579.

    Article  ADS  Google Scholar 

  • Santandrea, S., Gantois, K., Strauch, K., Teston, F., Tilmans, E., Baijot, C., Gerrits, D., De Groof, A., Schwehm, G., Zender, J.: 2013, PROBA2: Mission and spacecraft overview. Solar Phys. 286, 5.

    Article  ADS  Google Scholar 

  • Schrijver, C.J., Elmore, C., Kliem, B., Török, T., Title, A.M.: 2008, Observations and modeling of the early acceleration phase of erupting filaments involved in coronal mass ejections. Astrophys. J. 674, 586.

    Article  ADS  Google Scholar 

  • Schwenn, R., dal Lago, A., Huttunen, E., Gonzalez, W.D.: 2005, The association of coronal mass ejections with their effects near the Earth. Ann. Geophys. 23, 1033.

    Article  ADS  Google Scholar 

  • Seaton, D.B., Berghmans, D., Nicula, B., Halain, J.-P., De Groof, A., Thibert, T., Bloomfield, D.S., Raftery, C.L., Gallagher, P.T., Auchère, F., Defise, J.-M., D’Huys, E., Lecat, J.-H., Mazy, E., Rochus, P., Rossi, L., Schühle, U., Slemzin, V., Yalim, M.S., Zender, J.: 2013, The SWAP EUV imaging telescope part I: Instrument overview and pre-flight testing. Solar Phys. 286, 43.

    Article  ADS  Google Scholar 

  • Stenborg, G., Cobelli, P.J.: 2003, A wavelet packets equalization technique to reveal the multiple spatial-scale nature of coronal structures. Astron. Astrophys. 398, 1185.

    Article  ADS  Google Scholar 

  • Stenborg, G., Vourlidas, A., Howard, R.A.: 2008, A fresh view of the extreme-ultraviolet corona from the application of a new image-processing technique. Astrophys. J. 674, 1201.

    Article  ADS  Google Scholar 

  • Sturrock, P.A.: 1966, Model of the high-energy phase of solar flares. Nature 211, 695.

    Article  ADS  Google Scholar 

  • Su, Y., Dennis, B.R., Holman, G.D., Wang, T., Chamberlin, P.C., Savage, S., Veronig, A.: 2012, Observations of a two-stage Solar Eruptive Event (SEE): Evidence for secondary heating. Astrophys. J. Lett. 746, L5.

    Article  ADS  Google Scholar 

  • Subramanian, P., Dere, K.P.: 2001, Source regions of coronal mass ejections. Astrophys. J. 561, 372.

    Article  ADS  Google Scholar 

  • Titov, V.S., Démoulin, P.: 1999, Basic topology of twisted magnetic configurations in solar flares. Astron. Astrophys. 351, 707.

    ADS  Google Scholar 

  • Török, T., Kliem, B., Titov, V.S.: 2004, Ideal kink instability of a magnetic loop equilibrium. Astron. Astrophys. 413, L27.

    Article  ADS  MATH  Google Scholar 

  • van der Holst, B., Jacobs, C., Poedts, S.: 2007, Simulation of a breakout coronal mass ejection in the solar wind. Astrophys. J. Lett. 671, L77.

    Article  ADS  Google Scholar 

  • van der Holst, B., Manchester, W. IV, Sokolov, I.V., Tóth, G., Gombosi, T.I., DeZeeuw, D., Cohen, O.: 2009, Breakout coronal mass ejection or streamer blowout: The bugle effect. Astrophys. J. 693, 1178.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Grappin, R., Robbrecht, E., Sheeley, N.R. Jr.: 2012, On the nature of the solar wind from coronal pseudostreamers. Astrophys. J. 749, 182.

    Article  ADS  Google Scholar 

  • Webb, D.F., Howard, T.A.: 2012, Coronal mass ejections: Observations. Living Rev. Solar Phys. 9, 3.

    Article  ADS  Google Scholar 

  • Wuelser, J., Lemen, J.R., Tarbell, T.D., Wolfson, C.J., Cannon, J.C., Carpenter, B.A., Duncan, D.W., Gradwohl, G.S., Meyer, S.B., Moore, A.S., Navarro, R.L., Pearson, J.D., Rossi, G.R., Springer, L.A., Howard, R.A., Moses, J.D., Newmark, J.S., Delaboudiniere, J., Artzner, G.E., Auchere, F., Bougnet, M., Bouyries, P., Bridou, F., Clotaire, J., Colas, G., Delmotte, F., Jerome, A., Lamare, M., Mercier, R., Mullot, M., Ravet, M., Song, X., Bothmer, V., Deutsch, W.: 2004, EUVI: The STEREO-SECCHI extreme ultraviolet imager. In: Fineschi, S., Gummin, M.A. (eds.) Telescopes and Instrumentation for Solar Astrophysics, Proc. SPIE 5171, 111.

    Chapter  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, 7105.

    Article  Google Scholar 

  • Young, C.A., Gallagher, P.T.: 2008, Multiscale edge detection in the corona. Solar Phys. 248, 457.

    Article  ADS  Google Scholar 

  • Zhang, J., Wang, J.: 2002, Are homologous flare-coronal mass ejection events triggered by moving magnetic features? Astrophys. J. 566, L117. http://adsabs.harvard.edu/abs/2002ApJ...566L.117Z .

    Article  ADS  Google Scholar 

  • Zhou, G.P., Wang, J.X., Zhang, J., Chen, P.F., Ji, H.S., Dere, K.: 2006, Two successive coronal mass ejections driven by the kink and drainage instabilities of an eruptive prominence. Astrophys. J. 651, 1238.

    Article  ADS  Google Scholar 

  • Zuccarello, F.P., Seaton, D.B., Mierla, M., Poedts, S., Rachmeler, L.A., Romano, P., Zuccarello, F.: 2014, Observational evidence of torus instability as trigger mechanism for coronal mass ejections: The 2011 August 4 filament eruption. Astrophys. J. 785, 88.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by SHINE grant 0962716 and NASA grants NNX08AJ07G and NNX13AG11G to the Institute for Astronomy. SWAP is a project of the Centre Spatial de Liége and the Royal Observatory of Belgium funded by the Belgian Federal Science Policy Office (BELSPO). Mk4 data is provided by courtesy of the Mauna Loa Solar Observatory, operated by the High Altitude Observatory, as part of the National Center for Atmospheric Research (NCAR). NCAR is supported by the National Science Foundation. The SOHO/LASCO data used here are produced by a consortium of the Naval Research Laboratory (USA), Max-Planck-Institut für Aeronomie (Germany), Laboratoire d’Astronomie (France), and the University of Birmingham (UK). SOHO is a project of international cooperation between ESA and NASA. SDO data supplied is a courtesy of the NASA/SDO consortia. The authors thank the anonymous referee for their helpful comments. JPB is grateful to have been a PROBA2 Guest Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Byrne.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(M4V 12.6 MB)

(MOV 252.3 MB)

(MOV 200.7 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byrne, J.P., Morgan, H., Seaton, D.B. et al. Bridging EUV and White-Light Observations to Inspect the Initiation Phase of a “Two-Stage” Solar Eruptive Event. Sol Phys 289, 4545–4562 (2014). https://doi.org/10.1007/s11207-014-0585-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-014-0585-8

Keywords

Navigation