Skip to main content
Log in

Distributions of the maximum likelihood and minimum contrast estimators associated with the fractional Ornstein–Uhlenbeck process

  • Published:
Statistical Inference for Stochastic Processes Aims and scope Submit manuscript

Abstract

We discuss some inference problems associated with the fractional Ornstein–Uhlenbeck (fO–U) process driven by the fractional Brownian motion (fBm). In particular, we are concerned with the estimation of the drift parameter, assuming that the Hurst parameter \(H\) is known and is in \([1/2, 1)\). Under this setting we compute the distributions of the maximum likelihood estimator (MLE) and the minimum contrast estimator (MCE) for the drift parameter, and explore their distributional properties by paying attention to the influence of \(H\) and the sampling span \(M\). We also deal with the ordinary least squares estimator (OLSE) and examine the asymptotic relative efficiency. It is shown that the MCE is asymptotically efficient, while the OLSE is inefficient. We also consider the unit root testing problem in the fO–U process and compute the power of the tests based on the MLE and MCE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bercu B, Coutin L, Savy N (2011) Sharp large deviations for the fractional Ornstein-Uhlenbeck process. SIAM Theory Probab Appl 55:575–610

    Article  MathSciNet  MATH  Google Scholar 

  • Bishwal JPN (2008) Parameter estimation in stochastic differential equations. Springer, Berlin

    Book  MATH  Google Scholar 

  • Bishwal JPN (2011) Minimum contrast estimation in fractional Ornstein-Uhlenbeck process: continuous and discrete sampling. Fract Calc Appl Anal 14:375–410

    MathSciNet  MATH  Google Scholar 

  • Brouste A, Kleptsyna M (2010) Asymptotic properties of MLE for partially observed fractional diffusion system. Stat Inference Stoch Process 13:1–13

    Article  MathSciNet  MATH  Google Scholar 

  • Cheridito P, Kawaguchi H, Maejima M (2003) Fractional Ornstein-Uhlenbeck processes. Electron J Probab 8:1–14

    Article  MathSciNet  Google Scholar 

  • Duncan TE, Hu Y, Pasik-Duncan B (2000) Stochastic calculus for fractional Brownian motion I. Theory SIAM J Control Optim 38:582–612

    Article  MathSciNet  MATH  Google Scholar 

  • Gripenberg G, Norros I (1996) On the prediction of fractional Brownian motion. J Appl Probab 33:400–410

    Article  MathSciNet  MATH  Google Scholar 

  • Hu Y, Nualart D (2010) Parameter estimation for fractional Ornstein-Uhlenbeck processes. Stat Probab Lett 80:1030–1038

    Article  MathSciNet  MATH  Google Scholar 

  • Kleptsyna ML, Le Breton A, Roubaud MC (2000) Parameter estimation and optimal filtering for fractional type stochastic systems. Stat Inference Stoch Process 3:173–182

    Article  MathSciNet  MATH  Google Scholar 

  • Kleptsyna ML, Le Breton A (2002) Statistical analysis of the fractional Ornstein-Uhlenbeck type process. Stat Inference Stoch Process 5:229–248

    Article  MathSciNet  MATH  Google Scholar 

  • Kolmogorov AN (1940) Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. Dokl Acad Nauk SSSR 26:115–118

    Google Scholar 

  • Liptser RS, Shiryaev AN (1977) Statistics of random processes I: general theory. Springer, New York

    Book  MATH  Google Scholar 

  • Mandelbrot BB, Van Ness JW (1968) Fractional Brownian motions, fractional noises and applications. SIAM Rev 10:422–437

    Article  MathSciNet  MATH  Google Scholar 

  • Norros I, Valkeila E, Virtamo J (1999) An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli 5:571–587

    Article  MathSciNet  MATH  Google Scholar 

  • Tanaka K (1996) Time series analysis: nonstationary and noninvertible distribution theory. Wiley, New York

    MATH  Google Scholar 

  • Watson GN (1958) A treatise on the theory of Bessel functions, 2nd edn. Cambridge University Press, London

    Google Scholar 

Download references

Acknowledgments

The author would like to thank the editor, Professor Denis Bosq, and an anonymous referee for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuto Tanaka.

Appendix

Appendix

Proof of Theorem 1

It follows from the fractional version of Girsanov’s theorem that

$$\begin{aligned} m(\theta _1,\theta _2)&= \text{ E }\left[ \exp \left\{ \theta _1 \int \limits _0^M Q_H^\alpha (t) dZ_H^\alpha (t)+\theta _2 \int \limits _0^M \left\{ Q_H^\alpha (t)\right\} ^2 dv_H(t)\right\} \right] \\&= \text{ E }\left[ \exp \left\{ \theta _1 \int \limits _0^M Q_H^\beta (t) dZ_H^\beta (t)+\theta _2 \int \limits _0^M \left\{ Q_H^\beta (t)\right\} ^2 dv_H(t)\right\} \right. \nonumber \\&\quad \times \left. \frac{d \mu _{Y_H^\alpha }}{d \mu _{Y_H^\beta }}(Y_H^\beta )\right] \\&= \text{ E }\left[ \exp \left\{ (\theta _1+\alpha -\beta ) \int \limits _0^M Q_H^\beta (t) dZ_H^\beta (t) \right. \right. \\&\quad \left. \left. +\left( \theta _2-\frac{\alpha ^2-\beta ^2}{2}\right) \int \limits _0^M \left\{ Q_H^\beta (t)\right\} ^2 dv_H(t)\right\} \right] \nonumber \\&= \text{ E }\left[ \exp \left\{ (\theta _1+\alpha -\beta ) \int \limits _0^M Q_H^\beta (t) dZ_H^\beta (t) \right\} \right] \\&= e^{M(\beta -\alpha -\theta _1)/2} \text{ E }\left[ \exp \left\{ \kappa Z_H^\beta (M) \int \limits _0^M \, t^{2H-1} \, dZ_H^\beta (t)\right\} \right] \!\!, \end{aligned}$$

where \(\kappa =(\theta _1+\alpha -\beta )\eta _H/(4(1-H))\) and we have put \(\beta =\sqrt{\alpha ^2-2 \theta _2}\). Then it follows from Kleptsyna and Le Breton (2002) that this last quantity yields

$$\begin{aligned} m(\theta _1,\theta _2)&= e^{M(\beta -\alpha -\theta _1)/2} \left( \frac{4 \sin \pi H}{\pi \beta M}\right) ^{1/2} \left[ \left( 1+\frac{\beta -\alpha -\theta _1}{\beta } e^{z} \sinh z\right) ^2 I_{-H}(z)I_{H-1}(z)\right. \\&\quad \left. - \left( 1-\frac{\beta -\alpha -\theta _1}{\beta } e^{z} \cosh z\right) ^2 I_{1-H}(z)I_{H}(z)\right] ^{-1/2} \\&= e^{M(-\alpha -\theta _1)/2} \left( \frac{4 \sin \pi H}{\pi M}\right) ^{1/2} \left[ \frac{1}{\beta }\left( \beta \cosh z-(\alpha +\theta _1) \sinh z\right) ^2 I_{-H}(z)I_{H-1}(z)\right. \\&\quad \left. -\, \frac{1}{\beta }\left( \beta \sinh z-(\alpha +\theta _1) \cosh z\right) ^2 I_{1-H}(z)I_{H}(z)\right] ^{-1/2}\!\!, \\ \end{aligned}$$

where \(z=\beta M/2\). Then, using the relation

$$\begin{aligned} I_H(z) I_{H-1}(z)-I_{1-H}(z) I_H(z)=\frac{4 \sin \pi H}{2 \pi z}, \end{aligned}$$

it can be verified that \(m(\theta _1,\theta _2)\) is given by (35), which establishes Theorem 1.

Proof of Theorem 2

When \(\alpha =0\), the distibution function of \(\tilde{\alpha }_{MLE}\) is defined by

$$\begin{aligned} F_{MLE}(x)&= \frac{1}{2}+\frac{1}{\pi } \int \limits _0^\infty \, \frac{1}{\theta } \text{ Im } \big [m(-i \theta , i \theta x)\big ] \, d\theta \nonumber \\&= \frac{1}{2}+\frac{1}{\pi } \int \limits _0^\infty \, \frac{1}{u} \text{ Im } \big [m(-i u/M, i ux/M)\big ] \, du, \end{aligned}$$
(48)

where

$$\begin{aligned} m(-i u/M, i u x/M)&= e^{i u/2}\left[ \left( 1-\frac{i u}{2 M x}\right) \cosh ^2 z+ u \frac{\sinh 2 z}{2 z} \right. \\&\quad \left. +\, \frac{\pi }{4 \sin \pi H}\left( 2zI_{1-H}(z) I_H(z)+\frac{u^2}{2 z} I_{-H}(z) I_{H-1}(z)\right) \right] ^{-1/2}, \\ z&= \frac{1}{2} \sqrt{-2 i u M x}\!. \end{aligned}$$

Then, it follows from the form of the integrand that \(x\) is always coupled with \(M\) as \(M \times x\). Thus we can confirm the statement in the theorem.

As for the MCE, we have

$$\begin{aligned} F_{MCE}(x)&= \frac{1}{2}+\frac{1}{\pi } \int \limits _0^\infty \, \frac{1}{\theta } \text{ Im } \left[ e^{i M \theta /2} \, m(0, i \theta x)\right] \, d\theta \nonumber \\&= \frac{1}{2}+\frac{1}{\pi } \int \limits _0^\infty \, \frac{1}{u} \text{ Im } \left[ e^{i u/2} \, m(0, i u x/M)\right] \, du, \end{aligned}$$
(49)

where

$$\begin{aligned} m(0, i u x/M)&= e^{i u/2}\left[ \cosh ^2 z+\frac{\pi }{4 \sin \pi H} 2z I_{1-H}(z) I_H(z)\right] ^{-1/2}\!. \end{aligned}$$

The same reasoning as before applies here, which establishes Theorem 2.

Proof of Theorem 3

Let \(x_\gamma (H,M)\) be the \(100 \gamma \%\) point of the distribution of \(\tilde{\alpha }_{MLE}\) for \(\alpha =0\) under \(H\) and \(M\). Then the power of the test at the level \(\gamma \) is computed as

$$\begin{aligned} P\left( \tilde{\alpha }_{MLE} < x_\gamma (H,M)\left| \alpha <0\right) \right.&= \frac{1}{2}+\frac{1}{\pi } \int \limits _0^\infty \, \frac{1}{\theta } \text{ Im }\left[ \phi (\theta ;x_\gamma (H,M))\right] \, d\theta , \\&= \frac{1}{2}+\frac{1}{\pi } \int \limits _0^\infty \, \frac{1}{u} \text{ Im }\left[ \phi (u/M;x_\gamma (H,M))\right] \, du, \end{aligned}$$

where

$$\begin{aligned} \phi (u/M;x_\gamma (H,M))&= m(-i u/M, i u x_\gamma (H,m)/M) \\&= e^{i u-\alpha M} \left[ \left( 1+\frac{(i u-\alpha M)^2}{4 z^2}\right) \cosh ^2 z +(i u-\alpha M) \frac{\sinh 2z}{2 z} \right. \\&\quad \left. +\, \frac{\pi }{4 \sin \pi H}\left\{ 2 z I_{1-H}(z) I_H(z)-\frac{(i u-\alpha M)^2}{2 z} I_{-H}(z) I_{H-1}(z)\right\} \right] ^{-1/2}\!\!\!, \\ z&= \frac{1}{2}\left( (\alpha M)^2-2 i u M x_\gamma (H,M)\right) ^{1/2}. \end{aligned}$$

Noting that \(M x_\gamma (H,M)\) is independent of \(M\) because of Theorem 2, it is seen from the form of the c.f. that the power depends only on \(\alpha M\). We can also prove this fact for the power of the test based on \(\hat{\alpha }_{MCE}\), which establishes Theorem 3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, K. Distributions of the maximum likelihood and minimum contrast estimators associated with the fractional Ornstein–Uhlenbeck process. Stat Inference Stoch Process 16, 173–192 (2013). https://doi.org/10.1007/s11203-013-9085-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11203-013-9085-y

Keywords

Mathematics Subject Classification

Navigation