Skip to main content
Log in

Very short baseline interferometry: assessment of the relative stability of the GPS stations at the Yebes Observatory (Spain)

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Using a very short baseline interferometer, the relative stability of the YEBE and YEB1 GPS stations at the Yebes Observatory (Spain) is assessed. A baseline length bias of 1 mm was found between estimates from different observed frequencies due most likely to phase center errors resulting from antenna calibration uncertainties and/or phase center migrations caused by the electromagnetic coupling of antenna and monument. Also a bias of 0.5 mm in the vertical component of the baseline length was found between estimates from different cut-off elevation angles due to elevation-dependent errors as phase center and multipath. In addition to these biases, significant variations in the horizontal component of the baseline length were found, mostly in the form of a trend of −0.45 ± 0.10 mm/yr and an annual oscillation of amplitude 1 ± 0.1 mm and phase 155 ± 5 (beginning of June). The annual oscillation showed a high correlation with ambient temperature variations. Bedrock thermal expansion seems not to be a significant contributor to the annual variation due to the excellent agreement between the phases of the baseline and temperature annual signals. Thermoelastic expansion of the station monuments, which are comprised of concrete pillars and buildings, driven by the sunshine heating, is likely the origin of this oscillation. Near-field multipath and phase center errors are also rejected as being the main contributor to the annual signal. Conversely, near-field multipath and phase center errors may significantly contribute together to the time-correlated noise content of the baseline time series at long periods (flicker noise amplitude of 1.2 ± 0.1 mm). This research provides thus an assessment of the GPS station stability at the Yebes Observatory, which may be extended to the level of station-dependent contamination of geophysical and geodetic studies (e.g., plate tectonics, surface loadings, local ties) when similar station installations on top of buildings are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z., Collilieux X. and Métivier L., 2011. ITRF2008: an improved solution of the International Terrestrial Reference Frame. J. Geod., 85, 457–473.

    Article  Google Scholar 

  • Amiri-Simkooei A.R. and Tiberius C.C.J.M., 2007. Assessing receiver noise using GPS short baseline time series. GPS Solut., 11, 21–35.

    Article  Google Scholar 

  • Bennet R.A., 2008. Instantaneous deformation from continuous GPS: contributions from quasiperiodic loads. Geophys. J. Int., 174, 1052–1064.

    Article  Google Scholar 

  • Bilham R., 1997. Measurements of surface stability of engineered geodetic control points. In: The Global Positioning System for the Geosciences: Summary and Proceedings of a Workshop on Improving the GPS Reference Station Infrastructure for Earth, Oceanic, and Atmospheric Science applications, edited by R. H. Ware et al., p. 239, Natl. Acad. Press, Washington, D. C.

    Google Scholar 

  • Collilieux X., Altamimi Z., Coulot D., Ray J. and Sillard P., 2007. Comparison of very long baseline interferometry, GPS, and satellite laser ranging height residuals from ITRF2005 using spectral and correlation methods, J. Geophys. Res., 112, B12403.

    Article  Google Scholar 

  • Collilieux X., Métivier L., Altamimi Z., van Dam T. and Ray J., 2011. Quality assessment of GPS reprocessed terrestrial reference frame. GPS Solut., 15, 219–231.

    Article  Google Scholar 

  • Counselman C.C. and Shapiro I.I., 1979. Miniature Interferometer Terminals for Earth Surveying. Bull. Geod., 53, 139–163.

    Article  Google Scholar 

  • Davis J.L., Wernicke B.P. and Tamisiea M.E., 2012. On seasonal signals in geodetic time series. J. Geophys. Res., 117, B01403.

    Article  Google Scholar 

  • Dilßner F., Seeber G., Wübbena G. and Schmitz M., 2008. Impact of near-field effects on the GNSS position solution. In: ION GNSS 2008, Institute of Navigation, Savannah, GA, pp 612–623.

    Google Scholar 

  • Dong D.-N. and Bock Y., 1989. GPS network analysis with phase ambiguity resolution applied to crustal deformation studies in California. J. Geophys. Res., 94, 3949–3966.

    Article  Google Scholar 

  • Dow J.M., Neilan R.E. and Rizos C., 2009. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J. Geod., 83, 191–198.

    Article  Google Scholar 

  • Elósegui P., Davis J.L., Jaldehag R.T.K., Johansson J.M., Niell A.E. and Shapiro I.I., 1995. Geodesy using the Global Positioning System — the effects of signal scattering on estimates of site position. J. Geophys. Res., 100, 9921–9934.

    Article  Google Scholar 

  • Haas R., Bergstrand S. and Lehner W., 2013. Evaluation of GNSS monument stability. In: Altamimi Z. and Collilieux X. (Eds.), Reference Frames for Applications in Geosciences. International Association of Geodesy Symposia 138, Springer-Verlag, Berlin, Heidelberg, Germany, DOI: 10.1007/978-3-642-32998-2_8.

    Chapter  Google Scholar 

  • Harrison J.C. and Herbst K., 1977. Thermoelastic strains and tilts revisited. Geophys. Res. Lett., 4, 535–537.

    Article  Google Scholar 

  • Hatanaka Y., Sawada M., Horita A. and Kusaka M., 2001. Calibration of antenna-radome and monument-multipath effect of GEONET. Part 1: measurement of phase characteristics. Earth Planets Space, 53, 13–21.

    Google Scholar 

  • Herring T.A., King R.W. and McClusky S.C., 2006. GAMIT: Reference Manual Version 10.34. Internal Memorandum, Massachusetts Institute of Technology, Cambridge.

    Google Scholar 

  • Hill E.M., Davis J.L., Elósegui P., Wernicke B.P., Malikowski E. and Niemi N.A., 2009. Characterization of site-specific GPS errors using a short-baseline network of braced monuments at Yucca Mountain, southern Nevada. J. Geophys. Res., 114, B11402.

    Article  Google Scholar 

  • Hofmann-Wellenhof B., Lichtenegger H. and Collins J., 2001. GPS, Theory and Practice. 382 pp., Springer-Verlag Wien New York, ISBN 3-211-83534-2.

    Google Scholar 

  • Jaldehag R.T.K., Johansson J.M., Rönnäng B.O., Elósegui P., Davis J.L., and Shapiro I.I., 1996. Geodesy using the Swedish permanent GPS network: Effects of signal scattering on estimates of relative site positions. J. Geophys. Res., 101, 17841–17860.

    Article  Google Scholar 

  • King M.A. and Williams S.D.P., 2009. Apparent stability of GPS monumentation from shortbaseline time series. J. Geophys. Res., 114, B10403.

    Article  Google Scholar 

  • King M.A. and Watson C.S., 2010. Long GPS coordinate time series: Multipath and geometry effects. J. Geophys. Res., 115, B04403.

    Article  Google Scholar 

  • King M.A., Bevis M., Wilson T., Johns B. and Blume F., 2012. Monument-antenna effects on GPS coordinate time series with application to vertical rates in Antarctica. J. Geod., 86, 53–63.

    Article  Google Scholar 

  • Li W., Ebadian M.A, White T.L., Grubb R.G. and Fosters D., 1994. Heat and mass transfer in a contaminated porous concrete slab with variable dielectric properties. Int. J. Heat Mass. Transfer., 37, 1013–1027.

    Article  Google Scholar 

  • Mader G., 1999. GPS antenna calibration at the National Geodetic Survey. GPS Solut., 3, 50–58.

    Article  Google Scholar 

  • Mignard F., 2005. Famous, frequency analysis mapping on unusual sampling. Technical Report, Obs. de la Cote d’Azur Cassiopee, Nice, France.

    Google Scholar 

  • Penna N.T., King M.A. and Stewart M.P., 2007. GPS height time series: Short-period origins of spurious long-period signals. J. Geophys. Res., 112, B02402.

    Article  Google Scholar 

  • Prawirodirdjo L., Ben-Zion Y. and Bock Y., 2006. Observation and modeling of thermoelastic strain in Southern California Integrated GPS Network daily position time series. J. Geophys. Res., 111, B02408.

    Article  Google Scholar 

  • Ray J., Altamimi Z., Collilieux X. and van Dam T., 2008. Anomalous harmonics in the spectra of GPS position estimates. GPS Solut., 12, 55–64.

    Article  Google Scholar 

  • Romagnoli C., Zerbini S., Lago L., Richter B., Simon D., Domenichini F., Elmi C. and Ghirotti M., 2003. Influence of soil consolidation and thermal expansion effects on height and gravity variations. J. Geodyn., 35, 521–539.

    Article  Google Scholar 

  • Rothacher M., Beutler G., Behrend D., Donnellan A., Hinderer J., Ma C., Noll C., Oberst J., Pearlman M., Plag H.-P., Richter B., Schöne T., Tavernier G. and Woodworth P.L., 2009. The future Global Geodetic Observing System. In: Plag H.-P. and Pearlman M. (Eds.), Global Geodetic Observing System, Meeting the Requirements of a Global Society on a Changing Planet in 2020, Springer-Verlag, Heidelberg, Germany, 237–272.

    Google Scholar 

  • Santamaría-Gómez A., Bouin M.-N., Collilieux X. and Wöppelmann G., 2011. Correlated errors in GPS position time series: Implications for velocity estimates. J. Geophys. Res., 116, B01405.

    Article  Google Scholar 

  • Santamaría-Gómez A., Gravelle M., Collilieux X., Guichard M., Martín Míguez B., Tiphaneau P. and Wöppelmann G., 2012. Mitigating the effects of vertical land motion in tide gauge records using a state-of-the-art GPS velocity field. Global Planet. Change, 98–99, 6–17.

    Article  Google Scholar 

  • Scargle J.D., 1982. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astron. J., 263, 835–853.

    Article  Google Scholar 

  • Schenewerk M.S., van Dam T.M. and Nerem R.S., 1999. Seasonal motion in the Annapolis, Maryland GPS monument. GPS Solut., 2, 41–49.

    Article  Google Scholar 

  • Schupler B.R., 2001. The response of GPS antennas — How design, environment and frequency affect what you see. Phys. Chem. Earth, 26, 605–611.

    Article  Google Scholar 

  • Williams S.D.P., 2008. CATS: GPS coordinate time series analysis software. GPS Solut., 12, 147–153.

    Article  Google Scholar 

  • Williams S.D.P., Bock Y., Fang P., Jamason P., Nikolaidis R.M., Prawirodirdjo L., Miller M. and Johnson D.J., 2004. Error analysis of continuous GPS position time series. J. Geophys. Res., 109, B03412.

    Article  Google Scholar 

  • Wübbena G, Schmitz M., Boettcher G. and Schumann C., 2006. Absolute GNSS Antenna Calibration with a Robot: Repeatability of Phase Variations, Calibration of GLONASS and Determination of Carrier-to-Noise Pattern. In: proceedings of the IGS Workshop, May 8–12, ESOC, Darmstadt, Germany.

  • Wyatt F., 1982. Displacement of surface monuments: horizontal motion. J. Geophys. Res., 87, 979–989.

    Article  Google Scholar 

  • Yan H., Chen W., Zhu Y., Zhang W. and Zhong M., 2009. Contributions of thermal expansion of monuments and nearby bedrock to observed GPS height changes. Geophys. Res. Lett., 36, L13301.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro Santamaría-Gómez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santamaría-Gómez, A. Very short baseline interferometry: assessment of the relative stability of the GPS stations at the Yebes Observatory (Spain). Stud Geophys Geod 57, 233–252 (2013). https://doi.org/10.1007/s11200-012-1146-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-012-1146-y

Keywords

Navigation