Skip to main content
Log in

Predicting author h-index using characteristics of the co-author network

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

The objective of this work was to test the relationship between characteristics of an author’s network of coauthors to identify which enhance the h-index. We randomly selected a sample of 238 authors from the Web of Science, calculated their h-index as well as the h-index of all co-authors from their h-index articles, and calculated an adjacency matrix where the relation between co-authors is the number of articles they published together. Our model was highly predictive of the variability in the h-index (R 2 = 0.69). Most of the variance was explained by number of co-authors. Other significant variables were those associated with highly productive co-authors. Contrary to our hypothesis, network structure as measured by components was not predictive. This analysis suggests that the highest h-index will be achieved by working with many co-authors, at least some with high h-indexes themselves. Little improvement in h-index is to be gained by structuring a co-author network to maintain separate research communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Maurice Poirrier, Sebastián Moreno & Gonzalo Huerta-Cánepa

References

  • Abbasi, A., Chung, K., & Hossain, L. (2011). Egocentric analysis of co-authorship network structure, position and performance. Information Processing and Management, 48, 671–679.

    Article  Google Scholar 

  • Abbott, A., Cyranoski, D., Jones, N., Maher, B., Schiermeier, Q., & Van Noorden, R. (2010). Metrics: do metrics matter? Nature, 465, 860–862.

    Article  Google Scholar 

  • Adams, J. D., Black, G. C., Clemmons, J. R., & Stephan, P. E. (2005). Scientific teams and institutional collaborations: evidence from US universities, 1981–1999. Research Policy, 34, 259–285.

    Article  Google Scholar 

  • Anderson, T. R., Hankin, R. K. S., & Killworth, P. D. (2008). Beyond the Durfee square: enhancing the h-index to score total publication output. Scientometrics, 76, 577–588.

    Article  Google Scholar 

  • Banks, M. G. (2006). An extension of the Hirsch index: indexing scientific topics and compounds. Scientometrics, 69, 161–168.

    Article  Google Scholar 

  • Bar-Ilan, J. (2008). Which h-index?—A comparison of WoS, Scopus and Google Scholar. Scientometrics, 74, 257–271.

    Article  Google Scholar 

  • Batagelj, V., & Mrvar, A. (2000). Some analyses of Erdos collaboration graph. Social Networks, 22, 173–186.

    Article  MathSciNet  Google Scholar 

  • Batista, P. D., Campiteli, M. G., Kinouchi, O., & Martinez, A. S. (2006). Is it possible to compare researchers with different scientific interests? Scientometrics, 68, 179–189.

    Article  Google Scholar 

  • Beaver, D. D., & Rosen, R. (1979). Studies in Scientific Collaboration 2. Scientific co-authorship, research productivity and visibility in the French scientific elite, 1799–1830. Scientometrics, 1:133–149.

  • Becher, T. (2006). Disciplinary discourse. Studies in Higher Education, 12(3), 261–274.

    Article  Google Scholar 

  • Becher, T., & Trowler, P. (2001). Academic tribes and territories: intellectual enquiry and the culture of disciplines. Buckingham: SRHE and Open University Press.

    Google Scholar 

  • Borgatti, S. P., Everett, M. G., & Freeman, L. C. (2002). Ucinet for windows: software for social network analysis. Harvard: Analytic Technologies.

    Google Scholar 

  • Börner, K., Dall’Asta, L., Ke, W., & Vespignani, A. (2005). Studying the emerging global brain: analyzing and visualizing the impact of co-authorship teams. Complexity, Special issue on Understanding Complex Systems, 10, 57–67.

    Google Scholar 

  • Bornmann, L., & Daniel, H. D. (2005). Does the h-index for ranking of scientists really work? Scientometrics, 65, 391–392.

    Article  Google Scholar 

  • Bornmann, L., & Daniel, H. D. (2007). What do we know about the h index? Journal of the American Society for Information Science and Technology, 58, 1381–1385.

    Article  Google Scholar 

  • Bornmann, L., Mutz, R., & Daniel, H. D. (2008). Are there better indices for evaluation purposes than the h index? A comparison of nine different variants of the h index using data from biomedicine. Journal of the American Society for Information Science and Technology, 59, 830–837.

    Article  Google Scholar 

  • Burrell, Q. L. (2007). Hirsch index or Hirsch rate? Some thoughts arising from Liang’s data. Scientometrics, 73, 19–28.

    Article  Google Scholar 

  • Burt, R. S. (1992). Structural Holes: the social structure of competition. Cambridge: Harvard University Press.

    Google Scholar 

  • Collaboration, The Atlas, Aad, G., Abat, E., Abdallah, J., Abdelalim, A. A., Abdesselam, A., Abdinov, O., Abi, B. A. et al. (2008). “The ATLAS experiment at the CERN large hadron collider”. Journal of Instrumentation 3 (08).

  • Costas, R., & Bordons, M. (2007). The h-index: advantages, limitations and its relation with other bibliometric indicators at the micro level. Journal of Informetrics, 1, 193–203.

    Article  Google Scholar 

  • Crane, D. (1972). Invisble colleges: diffusion of knowledge in scientific communities. Chicago: University of Chicago Press.

    Google Scholar 

  • Cronin, B., & Meho, L. (2006). Using the h-index to rank influential information scientists. Journal of the American Society for Information Science and Technology, 57, 1275–1278.

    Article  Google Scholar 

  • de Castro, R., & Grossman, J. W. (1999). Famous trails to Paul Erdos. Mathematical Intelligencer, 21, 51–63.

    Article  MATH  Google Scholar 

  • Defazio, D., Lockett, A., & Wright, M. (2009). Funding incentives, collaborative dynamics and scientific productivity: evidence from the EU framework program. Research Policy, 38, 293–305.

    Article  Google Scholar 

  • Eaton, J. P., Ward, J. C., Kumar, A., & Reingen, P. H. (1999). Structural analysis of co-author relationships and author productivity in selected outlets for consumer behavior research. Journal of Consumer Psychology, 8, 39–59.

    Article  Google Scholar 

  • Egghe, L. (2007). Dynamic h-index: the Hirsch index in function of time. Journal of the American Society for Information Science and Technology, 58, 452–454.

    Article  Google Scholar 

  • Einstein, A., & Rosen, N. (1936). Two-body problem in general relativity theory. Physical Review, 49(5), 0404–0405.

    Article  Google Scholar 

  • Frenken, K., Holzl, W., & de Vor, F. (2005). The citation impact of research collaborations: the case of European biotechnology and applied microbiology (1988–2002). Journal of Engineering and Technology Management, 22, 9–30.

    Article  Google Scholar 

  • Glanzel, W. (2002). Coauthorship patterns and trends in the sciences (1980–1998): a bibliometric study with implications for database indexing and search strategies. Library Trends, 50, 461–473.

    Google Scholar 

  • Glanzel, W. (2006). On the h-index—A mathematical approach to a new measure of publication activity and citation impact. Scientometrics, 67, 315–321.

    Article  Google Scholar 

  • Glanzel, W. (2012). The role of core documents in bibliometric network analysis and their relation with h-type indices. Scientometrics, 93, 113–123.

    Article  Google Scholar 

  • Goldfinch, S., Dale, T., & DeRousen, K. (2003). Science from the periphery: collaboration, networks and ‘periphery effects’ in the citation of New Zealand Crown Research Institute articles, 1995–2000. Scientometrics, 57, 321–337.

    Article  Google Scholar 

  • He, Z. L., Geng, X. S., & Campbell-Hunt, C. (2009). Research collaboration and research output: a longitudinal study of 65 biomedical scientists in a New Zealand university. Research Policy, 38, 306–317.

    Article  Google Scholar 

  • Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102, 16569–16572.

    Article  Google Scholar 

  • Hirsch, J. E. (2007). Does the h index have predictive power? Proceedings of the National Academy of Sciences of the United States of America, 104, 19193–19198.

    Article  Google Scholar 

  • Hirsch, J. E. (2010). An index to quantify an individual’s scientific research output that take into account the effect of multiple coauthorship. Scientometrics, 85, 741–754.

    Article  Google Scholar 

  • Hou, H., Kretschmer, H., & Liu, Z. (2008). The structure of scientific collaboration networks in Scientometrics. Scientometrics, 75, 189–202.

    Article  Google Scholar 

  • Iglesias, J. E., & Pecharromán, C. (2007). Scaling the h-index for different scientific ISI fields. Scientometrics, 73, 303–320.

    Article  Google Scholar 

  • Imperial, J., & Rodríguez-Navarro, A. (2007). Usefulness of Hirsch’s h-index to evaluate scientific research in Spain. Scientometrics, 71, 271–282.

    Article  Google Scholar 

  • Jones, B. F., Wuchty, S., & Uzzi, B. (2008). Multi-university research teams: shifting impact, geography, and stratification in science. Science, 322, 1259–1262.

    Article  Google Scholar 

  • Katz, J. S., & Hicks, D. (1997). How much is a collaboration worth? A calibrated bibliometric model. Scientometrics, 40, 541–554.

    Article  Google Scholar 

  • Katz, J. S., & Martin, B. R. (1997). What is research collaboration? Research Policy, 26, 1–18.

    Article  Google Scholar 

  • Kelly, C. D., & Jennions, M. D. (2006). The h index and career assessment by numbers. Trends in Ecology & Evolution, 21, 167–170.

    Article  Google Scholar 

  • Knorr, K. D., & Mittermeir, R. (1980). Publication productivity and professional position—cross-national evidence on the role of organizations. Scientometrics, 2, 95–120.

    Article  Google Scholar 

  • Kretschmer, H. (2004). Author productivity and geodesic distance in bibliographic co-authorship networks, and visibility on the Web. Scientometrics, 60, 409–420.

    Article  Google Scholar 

  • Lazega, E., Jourda, M.-T., Mounier, L., & Stofer, R. (2008). Catching up with big fish in the big pond? Multi-level network analysis through linked design. Social Networks, 30, 159–176.

    Article  Google Scholar 

  • Lazega, E., Mounier, L., Jourda, M.-T., & Stofer, R. (2006). Organizational vs. personal social capital in scientists’ performance: a multi-level network study of elite French cancer researchers (1996–1998). Scientometrics, 67, 27–44.

    Article  Google Scholar 

  • Lee, S., & Bozeman, B. (2005). The impact of research collaboration on scientific productivity. Social Studies of Science, 35, 673–702.

    Article  Google Scholar 

  • Leimu, R., & Koricheva, J. (2005). Does scientific collaboration increase the impact of ecological articles? BioScience, 55, 438–443.

    Article  Google Scholar 

  • Liang, L. M. (2006). h-index sequence and h-index matrix: constructions and applications. Scientometrics, 69, 153–159.

    Article  Google Scholar 

  • Melin, G. (2000). Pragmatism and self-organization—research collaboration on the individual level. Research Policy, 29, 31–40.

    Article  Google Scholar 

  • Moody, J. (2004). The structure of a social science collaboration network: disciplinary cohesion from 1963 to 1999. American Sociological Review, 69, 213–238.

    Article  Google Scholar 

  • Moravcsik, M. J. (1988). Citation context classification of a citation classic concerning citation context classification. Social Studies of Science, 18, 515–521.

    Article  Google Scholar 

  • Mulchenko, Z. M., Granovsky, Y. V., & Strakhov, A. B. (1979). Scientometrical characteristics on information activities of leading scientists. Scientometrics, 1, 307–325.

    Article  Google Scholar 

  • Narin, F., Stevens, K., & Whitlow, E. S. (1991). Scientific co-operation in Europe and the citation of multinationally authored papers. Scientometrics, 21, 313–323.

    Article  Google Scholar 

  • Nemeth, C. J., & Goncalo, J. A. (2005). Creative collaborations from afar: the benefits of independent authors. Creativity Research Journal, 17, 1–8.

    Article  Google Scholar 

  • Newman, M. E. J. (2004). Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences of the United States of America, 101, 5200–5205.

    Article  Google Scholar 

  • Onodera, N., Iwasawa, M., Midorikawa, N., Yoshikane, F., Amano, K., Ootani, Y., et al. (2011). Journal of the American Society for Information Science and Technology, 62(4), 677–690.

    Article  Google Scholar 

  • Pao, M. L. (1982). Collaboration in computational musicology. Journal of the American Society for Information Science, 33, 38–43.

    Article  Google Scholar 

  • Persson, O., Glanzel, W., & Danell, R. (2004). Inflationary bibliometric values: the role of scientific collaboration and the need for relative indicators in evaluative studies. Scientometrics, 60, 421–432.

    Article  Google Scholar 

  • Radicchi, F., Fortunato, S., & Castellano, C. (2008). Universality of citation distributions: toward an objective measure of scientific impact. Proceedings of the National Academy of Sciences of the United States of America, 105, 17268–17272.

    Article  Google Scholar 

  • Rodgers, R. C., & Maranto, C. L. (1989). Causal-models of publishing productivity in psychology. Journal of Applied Psychology, 74, 636–649.

    Article  Google Scholar 

  • Roediger, H. L. III. (2006). The h index in science: a new measure of scholarly contribution. The Academic Observer 19.

  • Rousseau, R. (2007). The influence of missing publications on the Hirsch index. Journal of Informetrics, 1, 2–7.

    Article  Google Scholar 

  • Rousseau, R. (2008). Reflections on recent developments of the h-index and h-type indices. COLLNET Journal of Scientometrics and Information Management, 2, 1–8.

    Article  Google Scholar 

  • Saad, G. (2006). Exploring the h-index at the author and journal levels using bibliometric data of productive consumer scholars and business-related journals respectively. Scientometrics, 69, 117–120.

    Article  Google Scholar 

  • Schreiber, M. 2007. Self-citation corrections for the Hirsch index. Epl 78.

  • Schubert, A. (2012). A Hirsch-type index of co-author partnership ability. Scientometrics, 91, 303–308.

    Article  Google Scholar 

  • Schubert, A., Korn, A., & Telcs, A. (2009). Hirsch-type indices for characterizing networks. Scientometrics, 78, 375–382.

    Article  Google Scholar 

  • Sidiropoulos, A., Katsaros, D., & Manolopoulos, Y. (2007). Generalized Hirsch h-index for disclosing latent facts in citation networks. Scientometrics, 72, 253–280.

    Article  Google Scholar 

  • Skilton, P. F. (2009). Does the human capital of teams of natural science authors predict citation frequency? Scientometrics, 78, 525–542.

    Article  Google Scholar 

  • Swarna, T., Kalyane, V. L., & Kumar, V. (2008). Homi Jehangir Bhabha: his collaborators, citation identity, and his citation image makers. Malaysian Journal of Library & Information Science, 13, 49–67.

    Google Scholar 

  • Tang, L., & Walsh, J. P. (2010). Bibliometric fingerprints: name disambiguation based on approximate structure equivalence of cognitive map. Scientometrics, 84(3), 763–784.

    Article  Google Scholar 

  • Van Raan, A. F. J. (2006). Comparison of the Hirsch-index with standard bibliometric indicators and with peer judgment for 147 chemistry research groups. Scientometrics, 67, 491–502.

    Google Scholar 

  • Vanclay, J. K. (2007). On the robustness of the h-index. Journal of the American Society for Information Science and Technology, 58, 1547–1550.

    Article  Google Scholar 

  • Walters, G. D. (2006). Predicting subsequent citations to articles published in twelve crime-psychology journals: author impact versus journal impact. Scientometrics, 69, 499–510.

    Article  Google Scholar 

  • Wasserman, S., & Faust, K. (1994). Social network analysis: methods and applications. Structural analysis in the social sciences. New York: Cambridge University Press.

    Book  Google Scholar 

  • White, H. D. (2000). “Toward ego-centered citation analysis”, In: B. Cronin & H. B. Atkins (Eds.), The web of knowledge: a Festschrift in honor of Eugene Garfield. pp. 475–496. Medford, NJ: Information Today.

  • White, H. D. (2001). Author-centered bibliometrics through CAMEOs: characterizations automatically made and edited online. Scientometrics, 50, 607–637.

    Article  Google Scholar 

  • White, H. D., & McCain, K. W. (1998). Visualizing a discipline: an author co-citation analysis of information science, 1972–1995. Journal of the American Society for Information Science, 49, 327–355.

    Google Scholar 

  • Yoshikane, F., & Kageura, K. (2004). Comparative analysis of coauthorship networks of different domains: the growth and change of networks. Scientometrics, 60, 433–444.

    Article  Google Scholar 

  • Zhivotovsky, L. A., & Krutovsky, K. V. (2008). Self-citation can inflate h-index. Scientometrics, 77, 373–375.

    Article  Google Scholar 

  • Zuckerman, H. (1967). Nobel laureates in science—patterns of productivity, collaboration, and authorship. American Sociological Review, 32, 391–403.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher McCarty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarty, C., Jawitz, J.W., Hopkins, A. et al. Predicting author h-index using characteristics of the co-author network. Scientometrics 96, 467–483 (2013). https://doi.org/10.1007/s11192-012-0933-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-012-0933-0

Keywords

Navigation