Skip to main content
Log in

From Common Sense Concepts to Scientifically Conditioned Concepts of Chemical Bonding: An Historical and Textbook Approach Designed to Address Learning and Teaching Issues at the Secondary School Level

  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

This paper selects six key alternative conceptions identified in the literature on student understandings of chemical bonding and illustrates how a historical analysis and a textbook analysis can inform these conceptions and lead to recommendations for improving the teaching and learning of chemical bonding at the secondary school level. The historical analysis and the textbook analysis focus on the concepts of charge, octet, electron pair, ionic, covalent and metallic bonding. Finally, a table of recommendations is made for teacher and student in the light of four fundamental questions and the six alternative conceptions to enhance the quality of the curriculum resources available and the level of student engagement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. A major portion of this section was first presented at the 11th meeting of the IHPST group in 2011 at Thessalonica in Greece by one of the authors.

  2. Coll and Taylor 2001; Coll and Treagust 2001, 2003a, b; Peterson et al. 1989; Taber 1994, 2003; Tan and Treagust 1999.

References

  • Angier, N. (2007). The canon-A whirligig tour of the beautiful basics of science. New York: Houghton Mifflin.

    Google Scholar 

  • Assis, A. K. T. (2010). The experimental and historical foundations of electricity. Montreal: Apeiron.

    Google Scholar 

  • Barnes, J. (2005). The presocratic philosophers (E-book edition). New York: Routledge.

    Google Scholar 

  • Cassidy, D., Holton, G., & Rutherford, J. (2002). Understanding physics. New York: Springer.

    Book  Google Scholar 

  • Coffey, P. (2008). Cathedrals of science: The personalities and rivalries that made modern chemistry. USA: Oxford University Press.

    Google Scholar 

  • Coll, R. K., & Taylor, N. (2001). Alternative conceptions of chemical bonding held by upper secondary and tertiary students. Research in Science and Technological Education, 19(2), 171–191.

    Article  Google Scholar 

  • Coll, R. K., & Treagust, D. F. (2001). Learners’ mental models of chemical bonding. Research in Science Education, 31, 357–382.

    Article  Google Scholar 

  • Coll, R. K., & Treagust, D. F. (2002). Exploring tertiary students’ understanding of covalent bonding. Research in Science and Technological Education, 20(2), 241–267.

    Article  Google Scholar 

  • Coll, R. K., & Treagust, D. F. (2003a). Investigation of secondary school, undergraduate, and graduate learners’ mental models of ionic bonding. Journal of Research in Science Teaching, 40, 464–486.

    Article  Google Scholar 

  • Coll, R. K., & Treagust, D. F. (2003b). Learners’ mental models of metallic bonding: A cross- age study. Science Education, 87(5), 685–707.

    Article  Google Scholar 

  • Coulson, C. A. (1953). The spirit of applied mathematics. Oxford: Clarendon Press.

    Google Scholar 

  • Croft, M. (2010). Towards the development of a pedagogical history for a key chemical idea: Chemical bonding. Unpublished MEd (Hons) thesis, Avondale College of Higher Education.

  • Davies, P., & Gribbin, J. (1991). The matter myth. London: Penguin.

    Google Scholar 

  • de Berg, K. C. (2011). But Miss Franklin: Why do opposite charges attract and like charges repel? In F. Seraglou, V. Kouountzos, & A. Siatras (Eds.), Science and culture, proceedings of the 11 th IHPST meeting (pp. 187–191). Thessaloniki, Greece: International History and Philosophy of Science and Science Teaching Group.

    Google Scholar 

  • Descartes, R. (1984). Principles of philosophy (V.R. Miller & R.P. Miller, Trans.). The Netherlands: Kluwer.

  • Dobson, K., Grace, D., & Lovett, D. (2002). Physics. London: Harper Collins.

    Google Scholar 

  • Fernelius, W. C., & Robey, R. F. (1935). The nature of the metallic state. Journal of Chemical Education, 12(2), 53–69.

    Article  Google Scholar 

  • Fleming, P. J. (1978). Physics. Philippines: Addison-Wesley.

    Google Scholar 

  • Franklin, B. (1747, May 25). Benjamin Franklin Papers [Letter to Peter Collinson]. Philadelphia.

  • Georgiadou, A., & Tsaparlis, G. (2000). Chemistry teaching in lower secondary school with methods based on: A) psychological theories; B) the macro, representational, and submicro levels of chemistry. Chemistry Education Research and Practice, 1(2), 217–226.

    Article  Google Scholar 

  • Giancoli, D. C. (1989). Physics for scientists and engineers with modern physics (2nd ed.). New Jersey: Prentice Hall.

    Google Scholar 

  • Gilbert, J. (2008). Visualization: An emergent field of practice and enquiry in science education. In J. K. Gilbert, M. Reiner & M. Nakhleh (Eds.). Visualization: Theory and practice in science education. The Netherlands: Springer.

  • Gillespie, R. J. (1997). The great ideas of chemistry. Journal of Chemical Education, 74, 862–864.

    Article  Google Scholar 

  • Gillespie, R. J., & Robinson, E. A. (2006). Gilbert N. Lewis and the chemical bond: The electron pair and the octet rule from 1916 to the present day. Journal of Computational Chemistry, 28(1), 87–97.

    Google Scholar 

  • Glynn, I. (1999). The anatomy of thought: The origin and machinery of the mind. Oxford: Oxford University Press.

    Google Scholar 

  • Halliday, D., Resnick, R., & Krane, K. S. (1992). Physics (4th ed.). New York: Wiley.

    Google Scholar 

  • Heffernan, D., Parker, A., Pinniger, G., & Harding, J. (2002). Physics contexts 1. Australia: Pearson Education.

    Google Scholar 

  • Holton, G., & Brush, S. G. (2001). Physics, the human adventure. New Brunswick: Rutgers University Press.

    Google Scholar 

  • Hudson, J. (1992). The history of chemistry. Hong Kong: The Macmillan Press.

    Book  Google Scholar 

  • Irwin, D., Farrelly, R., & Garnett, P. (2001). Chemistry contexts 1. South Melbourne: Pearson Education.

    Google Scholar 

  • Jensen, W. B. (2005). The origins of positive and negative in electricity. Journal of Chemical Education, 82(7), 988.

    Article  Google Scholar 

  • Jensen, W. B. (2009). The origin of the metallic bond. Journal of Chemical Education, 86(3), 278–279.

    Article  Google Scholar 

  • Joesten, M., & Hogg, J. (2011). CHEM in your world. Belmont, CA: Brooks/Cole Cengage Learning.

    Google Scholar 

  • Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted learning, 7, 75–83.

    Article  Google Scholar 

  • Johnstone, A. H. (2006). Chemical education research in Glasgow in perspective. Chemistry Education Research and Practice, 7(2), 49–63.

    Article  Google Scholar 

  • Justi, R., & Gilbert, J. (2002). Models and modelling in chemical education. In J. K. Gilbert, O. de Jong, R. Justi, D. F. Treagust, & J. H. V. Driel (Eds.), Chemical education: Towards research-based practice (pp. 47–68). The Netherlands: Kluwer.

    Google Scholar 

  • Kind, V. (2004). Beyond appearances: Students’ misconceptions about basic chemical ideas. http://www.rsc.org/education/teachers/learnnet/pdf/learnnet/rsc/miscon.pdf.

  • Kohler, R. E. (1971). The origin of Lewis’s theory of the shared pair bond. Historical Studies in the Physical Sciences, 3, 343–376.

    Article  Google Scholar 

  • Kuhn, T. (2012). The Structure of Scientific Revolutions (50th anniversary edition). Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Levy Nahum, T., Mamlok-Naaman, R., & Hofstein, A. (2008). A new, “Bottom-Up” framework for teaching chemical bonding. Journal of Chemical Education, 85(12), 1680–1685.

    Article  Google Scholar 

  • Levy Nahum, T., Mamlok-Naaman, R., & Hofstein, A. (2013). Teaching and learning of the chemical bonding concept: problems and some pedagogical issues and recommendations. In G. Tsaparlis & H. Sevian (Eds.), Concepts of matter in science education (pp. 373–390). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Levy Nahum, T., Mamlok-Naaman, R., Hofstein, A., & Krajcik, J. (2007). Developing a new teaching approach for the chemical bonding concept aligned with current scientific and pedagogical knowledge. Science Education, 91(4), 579–603.

    Article  Google Scholar 

  • Levy Nahum, T., Mamlok-Naaman, R., Hofstein, A., & Taber, K. S. (2010). Teaching and learning the concept of chemical bonding. Studies in Science Education, 46(2), 179–207.

    Article  Google Scholar 

  • Lewis, G. N. (1913). Valence and tautomerism. Journal of the American Chemical Society, 35, 1448–1455.

    Article  Google Scholar 

  • Lewis, G. N. (1916). The atom and the molecule. Journal of the American Chemical Society, 38, 762–785.

    Article  Google Scholar 

  • Lewis, G. N. (1923). Valence and the structure of atoms and molecules. New York: Chemical Catalog.

    Google Scholar 

  • Lofts, G., O’Keefe, D., Pentland, P., Phillips, R., Bass, G., Nardelli, D., et al. (2004). Jacaranda physics 1 (2nd ed.). Milton: Wiley.

    Google Scholar 

  • Lukins, N., Elvins, C., Lohmeyer, P., Ross, B., Sanders, R., & Wilson, G. (2006). Heinemann chemistry I (4th ed.). Melbourne: Harcourt Education.

    Google Scholar 

  • Maddox, J. (1998). What remains to be discovered. London: Macmillan.

    Google Scholar 

  • Morris, R. (1997). Achilles in the quantum universe: The definitive history of infinity. London: Souvenir Press.

    Google Scholar 

  • Myers, R. (2003). The basics of chemistry: Basics of the hard sciences. USA: Greenwood Publishing Group.

    Google Scholar 

  • Nardelli, D. (2005). Science alive 3. Milton: Wiley.

    Google Scholar 

  • Niaz, M. (2001). A rational reconstruction of the origin of the covalent bond and its implications for general chemistry textbooks. International Journal of Science Education, 23(6), 623–641.

    Article  Google Scholar 

  • Niaz, M. (2009). Critical appraisal of physical science as a human enterprise: Dynamics of scientific progress. The Netherlands: Springer.

    Google Scholar 

  • Ohanian, H. C. (1987). Modern physics. New Jersey: Prentice Hall.

    Google Scholar 

  • Pabuccu, A., & Geban, O. (2006). Remediating misconceptions concerning chemical bonding through conceptual change text. Hacettepe University Journal of Education, 30, 184–193.

    Google Scholar 

  • Pearce Williams, L. (1965). Michael Faraday. London: Chapman and Hall.

    Google Scholar 

  • Peterson, R., Treagust, D., & Garnett, P. (1989). Development and application of a diagnostic instrument to evaluate grade-11 and -12 students’ concepts of covalent bonding and structure following a course of instruction. Journal of Research in Science Teaching, 26(4), 301–314.

    Article  Google Scholar 

  • Priestley, J. (1767). The history and present state of electricity, with original experiments. London: J. Dodsley, J. Johnson and T. Cadell.

    Google Scholar 

  • Quam, G. N., & Quam, M. B. (1934). Types of graphic classifications of the elements. Journal of Chemical Education, 11(1), 27–32.

    Google Scholar 

  • Rickard, G., Burger, N., Clarke, W., Geelan, D., Jeffrey, F., Johnstone, K., et al. (2009). Science focus 3. Melbourne: Pearson Heinemann.

    Google Scholar 

  • Robinson, W. R. (1998). An alternative framework for chemical bonding. Journal of Chemical Education, 75(10), 1074–1075.

    Article  Google Scholar 

  • Russell, B. (1923). ABC of atoms. New York: E.P. Dutton.

    Google Scholar 

  • Serway, R. A., & Jewett, J. W. (2004). Physics for scientists and engineers (6th ed.). Australia: Thomson.

    Google Scholar 

  • Serway, R. A., Moses, C. J., & Moyer, C. A. (2005). Modern physics (3rd ed.). Australia: Thomson.

    Google Scholar 

  • Shaik, S. (2007). The Lewis legacy: The chemical bond-A territory and heartland of chemistry. Journal of Computational Chemistry, 28(1), 51–61.

    Article  Google Scholar 

  • Spence, R., Bramley, L., Gemellarg, T., Wilson, D., & Wiseman, S. (2004). Chemistry-A contextual approach. Port Melbourne, Victoria: Harcourt Education.

    Google Scholar 

  • Stannard, P., & Williamson, K. (2001). Science world (Book 2). South Yarra, Melbourne: Macmillan Education.

    Google Scholar 

  • Stark, J. (1915). Principien der Atomdynamik: Die Elektrizitat im chemischen Atom (Teil 3). Leipzig: Hirzel.

    Google Scholar 

  • Sutton, C. (1984). The particle connection. London: Hutchinson.

    Google Scholar 

  • Taber, K. S. (1993). Student conceptions of chemical bonding: Using interviews to follow the development of A-Level students’ thinking. Paper presented at the Facets of Education-Dimensions of Research conference, University of Surrey. http://www.leeds.ac.uk/educol/documents/00001483.htm.

  • Taber, K. S. (1994). Misunderstanding the ionic bond. Education in Chemistry, 31(4), 100–103.

    Google Scholar 

  • Taber, K. S. (2001a). Constructing chemical concepts in the classroom: Using research to inform practice. Chemistry Education Research and Practice in Europe, 2(1), 43–51.

    Article  Google Scholar 

  • Taber, K. S. (2001b). Shifting sands: A case study of conceptual development as competition between alternative conceptions. International Journal of Science Education, 23, 731–753.

    Article  Google Scholar 

  • Taber, K. S. (2002a). Chemical misconceptions-prevention, diagnosis and cure-theoretical background (Vol. 1). London: Royal Society of Chemistry.

    Google Scholar 

  • Taber, K. S. (2002b). Chemical misconceptions-prevention, diagnosis and cure-classroom resources (Vol. 2). London: Royal Society of Chemistry.

    Google Scholar 

  • Taber, K. S. (2003). Mediating mental models of metals: Acknowledging the priority of the learner’s prior learning. Science Education, 87(5), 732–758.

    Article  Google Scholar 

  • Taber, K. S. (2006). Beyond constructivism: The progressive research programme into learning science. Studies in Science Education, 42, 125–184.

    Article  Google Scholar 

  • Taber, K. S. (2013). A common core to chemical conceptions: Learners’ conceptions of chemical stability, change and bonding. In G. Tsaparlis & H. Sevian (Eds.), Concepts of matter in science education (pp. 391–418). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Taber, K. S., & Coll, R. K. (2002). Bonding. In J. K. Gilbert, O. de Jong, R. Justi, D. F. Treagust, & J. H. V. Driel (Eds.), Chemical education: Towards research-based practice (pp. 213–234). The Netherlands: Kluwer.

    Google Scholar 

  • Talanquer, V. (2006). Commonsense chemistry: A model for understanding students’ alternative conceptions. Journal of Chemical Education, 83(5), 811.

    Article  Google Scholar 

  • Tan, K. C. D., Taber, K. S., Liu, X., Coll, R. K., Lorcuzo, M., Li, J., et al. (2008). Students’ conceptions of ionization energy: A cross-cultural study. International Journal of Science Education, 30(2), 263–283.

    Article  Google Scholar 

  • Tan, K. D., & Treagust, D. F. (1999). Evaluating students’ understanding of chemical bonding. School Science Review, 81(294), 75–83.

    Google Scholar 

  • Thickett, G. (2000). Chemistry pathways 1 (3rd ed.). South Yarra, Melbourne: Macmillan Education.

    Google Scholar 

  • Thickett, G., Stamell, J., & Thickett, L. (2000). Science tracks-explorations for Australian schools (year 9). South Yarra, Melbourne: Macmillan Education.

    Google Scholar 

  • Thornton, S. T., & Rex, A. (2000). Modern physics for scientists and engineers. Orlando: Saunders College.

    Google Scholar 

  • Tsaparlis, G. (1997). Atomic and molecular structure in chemical education: A critical analysis from various perspectives of science education. Journal of Chemical Education, 74, 922–925.

    Article  Google Scholar 

  • Unal, S., Calik, M., Ayas, A., & Coll, R. K. (2006). A review of chemical bonding studies: needs, aims, methods of exploring students’ conceptions, general knowledge claims and students’ alternative conceptions. Research in Science and Technological Education, 24(2), 141–172.

    Article  Google Scholar 

  • Veltman, M. (2003). Facts and mysteries in elementary particle physics. New Jersey: World Scientific.

    Book  Google Scholar 

  • Walding, R., Rapkins, G., & Rossiter, G. (2004). New century senior physics concepts in context (2nd ed.). South Melbourne: Oxford University Press.

    Google Scholar 

  • Walecka, J. D. (2008). Introduction to modern physics-theoretical foundations. New Jersey: World Scientific Publishing.

    Book  Google Scholar 

  • Yayon, M., Mamlok-Naaman, R., & Fortus, D. (2012). Characterizing and representing student’s conceptual knowledge of chemical bonding. Chemistry Education Research and Practice, 13(3), 248–267.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin de Berg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croft, M., de Berg, K. From Common Sense Concepts to Scientifically Conditioned Concepts of Chemical Bonding: An Historical and Textbook Approach Designed to Address Learning and Teaching Issues at the Secondary School Level. Sci & Educ 23, 1733–1761 (2014). https://doi.org/10.1007/s11191-014-9683-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-014-9683-0

Keywords

Navigation