Skip to main content

Advertisement

Log in

From Atmospheric Gas Spectroscopy to Climatological Problems

  • Published:
Russian Physics Journal Aims and scope

Readers are offered a brief review of sample results obtained from spectroscopic investigations begun in Laboratory of Spectroscopy of V. D. Kuznetsov Siberian Physical-Technical Institute at Tomsk State University as early as the 1930s. Specifically, we present findings of theoretical studies of relevance to a description of the light absorption in atmospheric windows and hence to solutions of global climate problems associated with the processes involving frequencies lying far from line centers. In the course of years, a large amount of spectroscopic data has been accumulated, which led to rapid development of information-computational systems to be discussed in the present work. Not only are the considered systems capable of making computations according to preset algorithms, but they can also provide answers relating to the completeness and comparison of the data collected in the system, taking into account the structure of the subject domain in question. A prototype of a computational-information infrastructure (virtual research environment) supporting climate studies is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Zuev, Transparency of the Atmosphere for Visible and Infrared Beams [in Russian], Moscow, Sovradio (1966).

    Google Scholar 

  2. O. K. Voitsekhovskaya, A. V. Rozina, and N. N. Trifonova, Information System for High-Resolution Spectroscopy [in Russian], Nauka, Novosibirsk (1988).

    Google Scholar 

  3. V. F. Golovko, A. N. Nikitin, A. A. Chursin, and V. G. Tyuterev, Information System AIRSENTRY for Modeling Atmospheric IR-Spectra and Radiation Transmission in the Atmosphere, in: Proc. 2nd Int. Workshop ADBIS’95, vol. 2, Moscow (1995), pp. 12–14.

  4. D. F. Adamov, A. Yu. Akhlyostin, E. P. Gordov, et al., Information-Computational System: Atmospheric Chemistry, in: SPIE, 3983, 578–583 (1999).

  5. K. M. Firsov, T. Yu. Chesnokova, E. M. Kozodoeva, and A. Z. Fazliev, Atmos. Ocean. Optics, 23, No. 5, 411–417 (2010).

    Article  Google Scholar 

  6. 6. S. D. Tvorogov and L. I. Nesmelova, Izv. Akad. Nauk SSSR, Ser. Fiz. Atmos. Okeana, 12, No. 6, 627–663 (1976).

    ADS  Google Scholar 

  7. L. I. Nesmelova, O. B, Rodimova, and S. D. Tvorogov, Izv. Vyssh. Uchevn. Zaved. Fiz., No. 10, 106–107 (1980).

  8. L. I. Nesmelova, O. B. Rodimova, S. D. Tvorogov, et al., Russ. Phys. J., 25, No. 5, 475 –478 (1982).

    Google Scholar 

  9. L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, Russ. Phys. J., 25, No. 5, 427–431 (1982).

    Google Scholar 

  10. L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, Russ. Phys. J., 30, No. 12, 1034–1036 (1987).

    Google Scholar 

  11. L. I. Nesmelova, S. D. Tvorogov, and V. V. Fomin, Line Wing Spectroscopy [in Russian], Nauka, Novosibirsk (1977).

    Google Scholar 

  12. L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, Spectral Line Shape and Intermolecular Interaction [in Russian], Nauka, Novosibirsk (1986).

    Google Scholar 

  13. S. D. Tvorogov and O. B. Rodimova, Collisional Spectral Line Shape [in Russian], IOA SO RAN Publishing, Tomsk (2013).

    Google Scholar 

  14. J. T. Kiehl and K. E. Trenberth, Bull. Amer. Meteorol. Soc., 78, No. 2, 197–208 (1997).

    Article  ADS  Google Scholar 

  15. K. M. Firsov, T. Yu. Chesnokova, and E. V. Bobrov, Opt. Atmos. Okeana, 27, No. 8, 665–672 (2014).

    Google Scholar 

  16. O. B. Rodimova, Atm. Ocean. Optics, 14, Nos. 6–7, 439–443 (2001).

    Google Scholar 

  17. M. J. H. Harmsen, D. P. van Vuuren, M. van den Hof, et al., Climatic Change, 33, 565–582 (2015).

    Article  Google Scholar 

  18. Q. Ma, R. H. Tipping, and C. Leforestier, J. Chem. Phys., 128, No. 12, 124313–1–124313–17 (2008).

  19. E. P. Gordov and S. D. Tvorogov, Semiclassical Representation Method of Quantum Theory [in Russian], Nauka, Novosibirsk (1984).

    Google Scholar 

  20. C. Leforestier, R. H. Tipping, and Q. Ma, J. Chem. Phys., 132, No. 16, 164302–1–164302–14 (2010).

  21. I. V. Ptashnik, K. P. Shine, and A. A. Vigasi, J. Quant.Spectrosc. Radiat. Transfer, 112, No. 8, 1286–1303 (2011).

    Article  ADS  Google Scholar 

  22. K. P. Shine, I. V. Ptashnik, and G. Radel, Surv. Geophys., 33, No. 3, 535–555 (2012).

    Article  ADS  Google Scholar 

  23. I. V. Ptashnik, Opt. Atmos. Okeana, 28, No. 5, 443–459 (2015).

    MathSciNet  Google Scholar 

  24. O. B. Rodimova, Opt, Atmos. Okeana, 28, No. 5, 460–473 (2015).

    Google Scholar 

  25. E. J. Mlawer, V. H. Payne, J. L. Moncet, et al., Phil. Trans. R. Soc. A, 370, No. 1968, 2520–2556 (2012).

    Article  ADS  Google Scholar 

  26. W. E. Bicknell, S. D. Cecca, M. K. Griffin, et al., J. Directed Energy, 2, 151–161 (2006).

    Google Scholar 

  27. D. Mondelain, A. Aradji, S. Kassi, and A. Campargu, J. Quant. Spectrosc. Radiat. Transfer, 130, 381–391 (2013).

    Article  ADS  Google Scholar 

  28. Portal ATMOS, http://atmos.iao.ru.

  29. E. P. Gordov, V. N. Lykosov, and A. Z. Fazliev, Advances Geoscie., 8, 33–38 (2006).

    Article  ADS  Google Scholar 

  30. A. Z. Fazliev, Optika Atmos. Okeana, 22, No. 10, 998–992 (2009).

    Google Scholar 

  31. D. De Roure, N. R. Jennings, and N. R. Shadbolt, The Semantic Grid: A Future e-Science Infrastructure, chapter 17, in: Grid Computing: Making the Global Infrastructure a Reality, Wiley Online Library (2003), pp. 437–470.

  32. M. L. Dubernet, V. Boudon, L. Culhane, et al., J. Quant. Spectrosc. Radiat. Transfer, 111, No.15, 2151–2159 (2010).

    Article  ADS  Google Scholar 

  33. N. A. Lavrentyev, M. M. Makogon, and A. Z. Fazliev, Atmos. Ocean. Optics, 24, No. 5, 436–451, (2011).

    Article  Google Scholar 

  34. G. M. Krekov and R. F. Rakhimov, Optical Models of Atmospheric Aerosol [in Russian], TF SO AN SSSR Publishing, Tomsk (1986).

    Google Scholar 

  35. Y. X. Hu and K. Stamnes, J. Climate, 6, No. 4, 728–742 (1993).

    Article  ADS  Google Scholar 

  36. A. Clingo and H. M. Schrecker, Q. J. R. Meteorol. Soc., 108, No. 456, 407–426 (1982).

    Article  ADS  Google Scholar 

  37. V. A. Frolkis and E. V. Rozanov, Radiation Code for Climate and General Circulation Models., in: Proc. IRS'92 Current Problems in Atmosph. Radiation, S. Keevallik and A. Deepak, eds., Publ., Hampton, (1993), pp. 176–179.

  38. E. P. Gordov and A. Z. Fazliev, Vychislit. Tekhnol., 9, part 1, Spec. Iss., 123–126 (2004).

  39. R. J. Allan, Virtual Research Environments: from Portals to Science Gateways, Chandos, Oxford Publishing (2009).

    Book  Google Scholar 

  40. A. Carusi and T. Reimer, JISC, (2010), http://www.jisc.ac.uk/media/documents/publications/vrelandscapereport.pdf.

  41. L. Candela, D. Castelli, and P. Pagano, Data Scie. J., 12, GRD175–GRD181 (2013), doi: http://dx.doi.org/10.2481/dsj.GRDI-013.

  42. E. P. Gordov and V. N. Lykosov, Comput. Technol., 12, Spec. Iss. 2, 19–30 (2007).

  43. A. Titov, E. P. Gordov, I. Okladnikov, and T. Shulgina, Int. J. Digit. Earth, 2, No. S 1, 105–119 (2009).

    Article  ADS  Google Scholar 

  44. E. P. Gordov, Z. Fazliev, V. N. Lykosov, et al., Environmental Change in Siberia Earth Observation, Field Studies and Modelling, H. Baltzer, ed., Ser. Advances in Global Change Research, vol. 40, Springer Science+Business Media B. V. (2010), pp. 233–252.

  45. E. P. Gordov, K. Bryant, O. N. Bulygina, et al., Development of Information-Computational Infrastructure for Environmental Research in Siberia as a baseline component of the Northern Eurasia Earth Science Partnership Initiative (NEESPI) Studies, in: Regional Environmental Changes in Siberia and Their Global Consequences, Ya. Groisman and G. Gutman, eds., Springer, (2013), pp. 19–55.

  46. T. M. Shulgina, E. Yu. Genina, and E. P. Gordov, Siberian Environ. Res. Lett., 6, 045210 (2011).

    Article  ADS  Google Scholar 

  47. Yu. E. Gordova, E. Yu. Genina, V. P. Gorbatenko, et al., Open Dist. Educ., No. 1 (49), 14–19 (2013).

  48. Yu. E. Gordova, Yu. V. Martynova, and T. M. Shulgina, Bul. Irkutsk State Univ. Ser. Earth’s Sciences, 9, 55–68 (2014).

  49. E. P. Gordov, V. N. Lykosov, V. N. Krupchatnikov, et al., Computational-Information Technologies for Monitoring and Modeling of Climate Change and its Consequences [in Russian], Nauka, Novosibirsk (2013).

    Google Scholar 

  50. I. G. Okladnikov, E. P. Gordov, A. G. Titov, et al., Optika Atmos. Okeana, 25, No. 2, 137–143 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Gordov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 32–41, April, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordov, E.P., Kabanov, M.V., Rodimova, O.B. et al. From Atmospheric Gas Spectroscopy to Climatological Problems. Russ Phys J 59, 502–512 (2016). https://doi.org/10.1007/s11182-016-0800-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-016-0800-1

Keywords

Navigation