Skip to main content
Log in

Intermolecular Radiationless Electronic Excitation Energy Transfer Near A Conductive Film

  • Published:
Russian Physics Journal Aims and scope

Based on the developed mathematical model, the radiationless electronic excitation energy transfer by surface plasmons between molecules adsorbed on a conductive film is investigated. A dependence of the rate of energy transfer on the geometrical system parameters is established. It is demonstrated that the presence of the plasmon channel increases up to two orders of magnitude the probability of energy transfer in comparison with the direct dipole-dipole interaction between the donor and acceptor spaced at the same distance in vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. S. Plotnikov and V. G. Zaitsev, Physical Principles of Molecular Electronics [in Russian], Publishing House of Physics Faculty of Moscow State University, Moscow (2000).

    Google Scholar 

  2. V. V. Klimov, Nanoplasmonics [in Russian], Fizmatlit, Moscow (2009).

    Google Scholar 

  3. L. Novotny and B. Hecht, Principles of Nano Optics [Russian translation], Fizmatlit, Moscow (2011).

    Google Scholar 

  4. V. V. Klimov, M. Ducloy, and V. S. Letokhov, Kvant. Elektr., 31, No. 7, 569–583 (2001).

    Article  Google Scholar 

  5. H. T. Dung, L. Knöll, and G. G. Welsch, Phys. Rev., A65, 043813 (2002).

    Article  ADS  Google Scholar 

  6. D. Jankovski, P. Bojarski, P. Kwiek, and S. Rangelova-Jankovska, Chem. Phys., 373, 238–242 (2010).

    Article  ADS  Google Scholar 

  7. F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, Nano Lett., 8, 4128 (2008).

    Article  ADS  Google Scholar 

  8. A. O. Govorov, J. Lee, and N. A. Kotov, Phys. Rev., B76, 125308 (2007).

    Article  ADS  Google Scholar 

  9. T. M. Chmereva and M. G. Kucherenko, Russ. Phys. J., 54, No. 3, 301–307 (2011).

    Article  MATH  Google Scholar 

  10. T. M. Chmereva and M. G. Kucherenko, Opt. Spektrosk., 110, No. 5, 819–826 (2011).

    Article  Google Scholar 

  11. M. G. Kucherenko, D. A. Kislov, and T. M. Chmereva, Russian Nanotekhn., Nos. 1–2, 71–77 (2012).

  12. P. Andrew and W. L. Barnes, Science, 306, 1002 (2004).

    Article  ADS  Google Scholar 

  13. N. Kh. Ibraev and V. A. Latonin, Fiz. Tverd. Tela, 41, No. 4, 736–739 (1999).

    Google Scholar 

  14. G. E. Dobretsov, Fluorescent Probes in Investigations of Cells, Membranes, and Lipoproteins (Table of Luminescent Probes) [in Russian], Nauka, Moscow (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Chmereva.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 116–121, October, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chmereva, T.M., Kucherenko, M.G. Intermolecular Radiationless Electronic Excitation Energy Transfer Near A Conductive Film. Russ Phys J 57, 1428–1435 (2015). https://doi.org/10.1007/s11182-015-0399-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-015-0399-7

Keywords

Navigation