Skip to main content
Log in

Heat Shock Proteins: Functions and Role in Adaptation to Hyperthermia

  • Materials from the Conference Dedicated to the Centenary of B.L. Astaurov
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The results are generalized of many-year studies into the adaptive role of heat shock proteins in different animals, including the representatives of cold- and warm-blooded species that inhabit regions with different thermal conditions. Adaptive evolution of the response to hyperthermia can lead to different results depending on the species. The thermal threshold of induction of the heat shock proteins in desert thermophylic species is, as a rule, higher than in the moderate climate species. In addition, thermoresistant species are often characterized by a certain level of heat shock proteins in cells even at a physiologically normal temperature. Although adaptation to hyperthermia is achieved in most cases without changes in the number of heat shock genes, they can be amplified in some cases in termophylic species. The role of mobile elements in evolution of the heat shock genes was shown and approach was developed for directional introduction of mutations in the promoter regions of these genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Astaurov, B.L., Iskusstvennyi partenogenez u tutovogo shelkopryada (eksperimental’noe issledovanie) (Artificial Parthenogenesis in Silkworm: An Experimental Study), Moscow: Akad. Nauk SSSR, 1940.

    Google Scholar 

  • Craig, E.A. and Jacobsen, K., Mutations of the Heat Inducible 70 Kilodalton Genes of Yeast Confer Temperature Sensitive Growth, Cell, 1984, vol. 38, no.3, pp. 841–849.

    Article  PubMed  Google Scholar 

  • Evgen’ev, M.B., Kolchinski, A., Levin, A., et al., Heat-Shock DNA Homology in Distantly Related Species of Drosophila, Chromosoma, 1978, vol. 68, no.4, pp. 357–365.

    Article  Google Scholar 

  • Evgen’ev, M.B., Zatsepina, O.G., Garbuz, D.G., et al., Evolution and Arrangement of the hsp70 Gene Cluster in Two Closely Related Species of the virilis Group of Drosophila, Chromosoma, 2004, vol. 113, pp. 223–232.

    Article  PubMed  Google Scholar 

  • Evgen’ev, M.B., Sheinker, V.Sh., Levin, A.V., et al., Molecular Mechanisms of Adaptation to Hypothermia in Higher Organisms. 1. Synthesis of heat Shock Proteins in Cultured Cells of Various Silkworm Species and in Larvae, Molekul. Biol., 1987, vol. 21, no.2, pp. 484–494.

    Google Scholar 

  • Feder, M.E. and Hofmann, G.E., Heat-Shock Proteins, Molecular Chaperones, and the Stress Response: Evolutionary and Ecological Physiology, Annu. Rev. Physiol., 1999, vol. 61, pp. 243–282.

    Article  PubMed  Google Scholar 

  • Feder, M.E., Cartano, N.V., Milos, L., et al., Effect of Engineering hsp70 Copy Number on hsp70 Expression and Tolerance of Ecologically Relevant Heat Shock in Larvae and Pupae of Drosophila melanogaster, J. Exp. Biol., 1996, vol. 199, no.8, pp. 1837–1844.

    PubMed  Google Scholar 

  • Garbuz, D.G., Zatsepina, O.G., Feder, M.E., and Evgen’ev, M.B., Evolution of Thermotolerance and the Heat-Shock Response: Evidence from Inter/Intra Specific Comparison and Interspecific Hybridization in the Drosophila Virilis Species Group. I. Thermal Phenotype, J. Exp. Biol., 2003, vol. 206, pp. 2399–2408.

    Article  PubMed  Google Scholar 

  • Gehring, J.W. and Wehner, R., Heat Shock Protein Synthesis and Thermotolerance in Cataglyphis, an Ant from the Sahara Desert, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 2994–2998.

    PubMed  Google Scholar 

  • Heat Shock from Bacteria to Man, Schlesinger, M.J., Ed., New York: Cold Spring Harbor Lab, 1982.

    Google Scholar 

  • Johnson, R.N. and Kucey, B.L., Competitive Inhibition of hsp70 Expression Causes Thermosensitivity, Science, 1988, vol. 242, pp. 1551–1554.

    PubMed  Google Scholar 

  • Kelley, W.L., The J-Domain Family and the Recruitment of Chaperone Power, Trends Biochem. Sci., 1998, vol. 23, pp. 222–227.

    Article  PubMed  Google Scholar 

  • Krebs, R.A. and Feder, M.E., Deleterious Consequences of hsp70 Overexpression in Drosophila melanogaster Larvae, Cell Stress Chaperones, 1997, vol. 2, no.1, pp. 60–71.

    Article  PubMed  Google Scholar 

  • Lindquist, S., The Heat-Shock Response, Annu. Rev. Biochem., 1986, vol. 55, pp. 1151–1191.

    Article  PubMed  Google Scholar 

  • Leigh Brown, A.J. and Ish-Horowicz, D., Evolution of the 87A and 87C Heat-Shock Loci in Drosophila, Nature, 1981, vol. 290, no.5808, pp. 677–682.

    Article  PubMed  Google Scholar 

  • Lerman, D.N., Michalak, P., Helin, A.B., et al., Modification of Heat-Shock Gene Expression in Drosophila melanogaster Populations via Transposable Elements, Mol. Biol. Evol., 2003, vol. 20, no.1, pp. 135–144.

    Article  PubMed  Google Scholar 

  • Lyashko, V.N., Vikulova, V.K., Chernicov, V.G., et. al., Comparison of the Heat Shock Response in Ethnically and Ecologically Different Human Populations, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, no.26, pp. 12 492–12 495.

    Google Scholar 

  • Lozovskaya, E.R. and Evgen’ev, M.B., Heat Shock in Drosophila and Regulation of Genome Activity, Molekul. Biol., 1984, vol. 20, no.1, pp. 142–185.

    Google Scholar 

  • Margulis, B.A. and Guzhova, I.V., Stress Proteins in Eukaryotic Cell, Tsitologiya, 2000, vol. 42, no.4, pp. 323–342.

    Google Scholar 

  • Strunnikov, V.A., Sex Regulation in Practical Sericulture, Priroda, 1972, no. 7, pp. 36–47.

  • Timakov, B., Liu, X., Turgut, I., and Zhang, P., Timing and Targeting of P-Element Local Transposition in the Male Germline of Drosophila melanogaster, Genetics, 2002, vol. 160, pp. 1011–1022.

    PubMed  Google Scholar 

  • Ulmasov, H.A., Ovezmukhammedov, A., Karaev, K.K., and Evgen’ev, M.B., Molecular Mechanisms of Adaptation to Hypothermia in Higher Organisms. 3. Induction of Heat Shock Proteins in Two Leischmania Species, Molekul. Biol., 1988, vol. 22, no.6, pp. 1583–1589.

    Google Scholar 

  • Ulmasov, Kh.A., Shammakov, S., Karaev, K., and Evgen’ev, M.B., Heat Shock Proteins and Thermoresistance in Lizards, Proc. Natl. Acad. Sci. USA, 1992, vol. 86, pp.1666–1670.

    Google Scholar 

  • Ulmasov, H.A., Karaev, K.K., Lyashko, V.N., and Evgen’ev, M.B., Heat-Shock Response in Camel (Camelus dromedaries) Blood Cells and Adaptation to Hyperthermia, Comp. Biochem. Physiol. B, 1993, vol. 106, no.4, pp. 867–872.

    Article  PubMed  Google Scholar 

  • Ulmasov, K.A., Zatsepina, O.G., Molodtsov, V.B., and Evgen’ev, M.B., Natural Body Temperature and Kinetics of Heat-Shock Protein Synthesis in the Toad-Heated Agamid Lizard Phrynocephalus interscapularis, Amphibia-Reptilia, 1999, vol. 20, pp. 1–9.

    Article  Google Scholar 

  • Wu, C., Heat Shock Transcription Factors: Structure and Regulation, Ann. Rev. Cell. Devel. Biol., 1995, vol. 11, pp. 441–469.

    Article  Google Scholar 

  • Zatsepina, O.G., Ulmasov, K.A., Beresten, S.F., et al., Thermotolerant Desert Lizards Characteristically Differ in Terms of Heat-Shock System Regulation, J. Exp. Biol., 2000, vol. 203, no.6, pp. 1017–1025.

    PubMed  Google Scholar 

  • Zatsepina, O.G., Velikodvorskaia, V.V., Molodtsov, V.B., et al., A Drosophila melanogaster Strain from Sub-Equatorial Africa Has Exceptional Thermotolerance but Decreased hsp70 Expression, J. Exp. Biol., 2001, vol. 204, no.11, pp. 1869–1881.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Ontogenez, Vol. 36, No. 4, 2005, pp. 265–273.

Original Russian Text Copyright © 2005 by Evgen’ev, Garbuz, Zatsepina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evgen’ev, M.B., Garbuz, D.G. & Zatsepina, O.G. Heat Shock Proteins: Functions and Role in Adaptation to Hyperthermia. Russ J Dev Biol 36, 218–224 (2005). https://doi.org/10.1007/s11174-005-0036-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11174-005-0036-4

Key words

Navigation