Skip to main content
Log in

Features of physicochemical properties of the hydroxyapatite—ruthenium system depending on the stage of metal ion introduction into the cocrystallization process

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The influence of small amounts of ruthenium(iii) ions on the morphology, phase composition, and structure of the products formed under the conditions of hydroxyapatite (HAP) synthesis was studied by electron microscopy (including high resolution), energy dispersive analysis, and XRD. The introduction of doping ruthenium(iii) ions into the reaction medium at various stages of HAP formation affects the degree of aggregation of primary HAP—Ru nanoparticles. In the case of introducing Ru at the final stage of HAP synthesis, the formation of individual thread-like HAP—Ru nanoparticles is observed, but no formation of the intrinsic ruthenium phase is observed. The RuIII ions are distributed predominantly uniformly over the nanoparticle surface. The cocrystallization method for preparing composites of HAP with ruthenium radionuclides is promising for the development of new radiopharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Y. Lu, D. Zhu, Q. Le, Y. Wang, W. Wang, Nanoscale, 2022, 14, 16339; DOI: https://doi.org/10.1039/d2nr02994d.

    Article  CAS  PubMed  Google Scholar 

  2. X-G. Bai, Y. Zheng, J. Qi, Front. Pharmacol., 2022, 13, 1018951; DOI: https://doi.org/10.3389/fphar.2022.1018951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. A. P. Orlov, T. P. Trofimova, M. A. Orlova, Russ. Chem. Bull., 2022, 71, 415; DOI: https://doi.org/10.1007/s11172-022-3429-y.

    Article  CAS  Google Scholar 

  4. N. E. Borisova, M. A. Orlova, V. A. Knizhnikov, V. K. Dolgova, M. D. Reshetova, A. P. Orlov, Mendeleev Commun., 2021, 31, 207; DOI: https://doi.org/10.1016/j.mencom.2021.03.020.

    Article  CAS  Google Scholar 

  5. I. Zuba, M. Zuba, M. Piotrowski, A. Pawlukoj, Appl. Radiat. Isot., 2020, 162, 109176; DOI: https://doi.org/10.1016/j.apradiso.2020.109176.

    Article  CAS  PubMed  Google Scholar 

  6. V. Y. Yaryshev, A. V. Severin, M. A. Orlova, Russ. Chem. Bull., 2023, 72, 2031; DOI: https://doi.org/10.1007/s11172-023-3996-6.

    Article  CAS  Google Scholar 

  7. I. V. Melikhov, V. F. Komarov, A. V. Severin, V. E. Bozhevol’nov, V. N. Rudin, Dokl. Phys. Chem., 2000, 373, 125.

    Google Scholar 

  8. M. A. Orlova, A. L. Nikolaev, T. P. Trofimova, A. P. Orlov, A. V. Severin, S. N. Kalmykov, Bull. RSMU, 2018, 6, 86; DOI: https://doi.org/10.24075/brsmu.2018.075.

    Google Scholar 

  9. T. Gao, Y. Yin, W. Fang, Q. Cao, Mol. Catal., 2018, 450, 55–64; DOI: https://doi.org/10.1016/j.mcat.2018.03.006.

    Article  CAS  Google Scholar 

  10. V. K. Dolgova, A. V. Gopin, A. L. Nikolaev, A. P. Orlov, T. P. Trofimova, M. A. Orlova, Mendeleev Commun., 2022, 32, 281–282; DOI: https://doi.org/10.1016/j.mencom.2022.03.043.

    Article  Google Scholar 

  11. A. V. Severin, D. A. Pankratov, Russ. J. Inorg. Chem., 2016, 61, 265; DOI: https://doi.org/10.1134/S0036023616030190.

    Article  CAS  Google Scholar 

  12. K. Tõnsuaadu, M. Gruselle, F. Villain, R. Thouvenot, M. Peld, V. Mikli, R. Traksmaa, P. Gredin, X. Carrier, L. Salles, J. Colloid Interface Sci., 2006, 304, 283; DOI: https://doi.org/10.1016/j.jcis.2006.07.079.

    Article  PubMed  Google Scholar 

  13. A. L. Nikolaev, A. V. Gopin, A. V. Severin, V. N. Rudin, M. A. Mironov, N. V. Dezhkunov, Ultrasonics Sonochem., 2018, 44, 390; DOI: https://doi.org/10.1016/j.ultsonch.2018.02.047.

    Article  CAS  Google Scholar 

  14. A. V. Severin, I. T. Smykov, V. E. Bozhevolnov, Mosc. Univ. Chem. Bull., 2014, 69, 45; DOI: https://doi.org/10.3103/S0027131414010088.

    Article  Google Scholar 

Download references

Funding

This work was carried out in the framework of state assignment No. 122012600116-4 “Preparation and Use of Radionuclides and Labeled Compounds for Nuclear Medicine Purposes, Study of Biologically Significant Processes, and Interaction of Living Organisms with Ionizing Radiation.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Orlova.

Ethics declarations

Animal Testing and Ethics

No human or animal subjects were used in this research.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note. Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 73, No. 4, pp. 828–833, April, 2024.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Severin, A.V., Lapshin, D.O., Yaryshev, V.Y. et al. Features of physicochemical properties of the hydroxyapatite—ruthenium system depending on the stage of metal ion introduction into the cocrystallization process. Russ Chem Bull 73, 828–833 (2024). https://doi.org/10.1007/s11172-024-4196-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-024-4196-8

Key words

Navigation