Skip to main content
Log in

Micellization of sodium dodecyl sulfate in the vicinity of Krafft point: an NMR and dielectric spectroscopy study

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The structural state of ionic surfactant sodium dodecyl sulfate (SDS) on passing through the Krafft point (classical characteristic parameter determining the relationship between surfactant solubility and micelle formation) was studied by two independent physical methods, NMR and dielectric spectroscopies. It was established that the micellar structure of concentrated SDS solution is preserved on cooling down to 10 °C, which is much lower than the reported Krafft point of SDS lying near 18 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. I. Rusanov, Mitselloobrazovanie v rastvorakh poverkhnostno-aktivnykh veshchestv [Micellization in Surfactant Solutions], Khimiya, St. Petersburg, 1992, 280 pp. (in Russian).

    Google Scholar 

  2. Y. Moroi, R. Matuura, Bull. Chem. Soc. Jpn, 1988, 61, 333; DOI: https://doi.org/10.1246/bcsj.61.333.

    Article  CAS  Google Scholar 

  3. Y. Moroi, Progr. Colloid Polym. Sci., 1988, 77, 55; DOI: https://doi.org/10.1007/BFb0116760.

    Article  CAS  Google Scholar 

  4. Yu. F. Zuev, R. Kh. Kurbanov, B. Z. Idiyatullin, O. G. Us’yarov, Colloid J., 2007, 69, 444; DOI: https://doi.org/10.1134/S1061933X07040059.

    Article  CAS  Google Scholar 

  5. N. N. Vylegzhanina, A. B. Mirgorodskaya, V. A. Pankratov, Yu. F. Zuev, Colloid J., 2010, 72, 168; DOI: https://doi.org/10.1134/S1061933X10020043.

    Article  CAS  Google Scholar 

  6. O. I. Gnezdilov, Yu. F. Zuev, O. S. Zueva, K. S. Potarikina, O. G. Us’yarov, Appl. Mag. Res., 2011, 40, 91; DOI: https://doi.org/10.1007/s00723-010-0185-1.

    Article  CAS  Google Scholar 

  7. N. Zoeller, D. Blankschtein, Langmuir, 1998, 14, 7155; DOI: https://doi.org/10.1021/la9805847.

    Article  CAS  Google Scholar 

  8. A. T. Gubaidullin, I. A. Litvinov, A. I. Samigullina, O. S. Zueva, V. S. Rukhlov, B. Z. Idiyatullin, Yu. F. Zuev, Russ. Chem. Bull., 2016, 65, 158; DOI: https://doi.org/10.1007/s11172-016-1278-2.

    Article  CAS  Google Scholar 

  9. O. S. Zueva, V. S. Rukhlov, Yu. F. Zuev, ACS Omega, 2022, 7, 6174; DOI: https://doi.org/10.1021/acsomega.1c06665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. O. S. Zueva, A. O. Makarova, B. I. Khairutdinov, Yu. F. Zuev, A. N. Turanov, Russ. Chem. Bull., 2021, 70, 1185; DOI: https://doi.org/10.1007/s11172-021-3203-6.

    Article  CAS  Google Scholar 

  11. D. M. Arkhipova, V. V. Ermolaev, V. A. Milukov, F. G. Valeeva, G. A. Gainanova, L. Ya. Zakharova, Russ. Chem. Bull., 2022, 71, 804; DOI: https://doi.org/10.1007/s11172-022-3481-7.

    Article  CAS  Google Scholar 

  12. Yu. V. Shulevich, Yu. A. Zakharova, M. V. Motyakin, E. G. Dukhanina, I. S. Ionova, A. V. Navrotsky, I. A. Novakov, Russ. Chem. Bull., 2022, 71, 1593; DOI: https://doi.org/10.1007/s11172-022-3568-1.

    Article  CAS  Google Scholar 

  13. O. Söderman, P. Stilbs, W. S. Price, Concepts Magn. Reson. Part A, 2004, 23, 121; DOI: https://doi.org/10.1002/cmr.a.20022.

    Article  Google Scholar 

  14. E. Pettersson, D. Topgaard, P. Stilbs, O. Söderman, Langmuir, 2004, 20, 1138; DOI: https://doi.org/10.1021/la035703j.

    Article  CAS  PubMed  Google Scholar 

  15. O. S. Zueva, A. M. Kusova, A. O. Makarova, A. Turanov, A. Iskhakova, V. V. Salnikov, Yu. F. Zuev, Colloids Surf. A: Physicochem. Eng. Asp., 2020, 603, 125296; DOI: https://doi.org/10.1016/j.colsurfa.2020.125296.

    Article  CAS  Google Scholar 

  16. B. Z. Idiyatullin, K. S. Potarikina, Yu. F. Zuev, O. S. Zueva, O. G. Us’yarov, Colloid J., 2013, 75, 532; DOI: https://doi.org/10.1134/S1061933X13050037.

    Article  CAS  Google Scholar 

  17. H. Fröhlich, Theory of Dielectrics: Dielectric Constant and Dielectric Loss, Clarendon Press, Oxford, 1958, 192 pp.

    Google Scholar 

  18. Yu. D. Feldman, Yu. F. Zuev, E. A. Polygalov, V. D. Fedotov, Coll. Polym. Sci., 1992, 270, 768–780; DOI: https://doi.org/10.1007/BF00776148.

    Article  CAS  Google Scholar 

  19. W. H. H. Woodward, in Broadband Dielectric Spectroscopy: A Modern Analytical Technique, American Chemical Society, Washington, DC, 2021, 1375, Ch. 1, p. 3; DOI: https://doi.org/10.1021/bk-2021-1375.

    Google Scholar 

  20. Yu. Feldman, N. Kozlovich, I. Nir, N. Garti, Coll. Surfaces A, 1997, 128, 47; DOI: https://doi.org/10.1016/S0927-7757(96)03909-X.

    Article  CAS  Google Scholar 

  21. R. Buchner, C. Baar, P. Fernandez, S. Schrfdle, W. Kunz, J. Mol. Liquids, 2005, 118, 179; DOI: https://doi.org/10.1016/j.molliq.2004.07.035.

    Article  CAS  Google Scholar 

  22. E. O. Stejskal, J. E. Tanner, J. Chem. Phys., 1965, 42, 288; DOI: https://doi.org/10.1063/1.1695690.

    Article  CAS  Google Scholar 

  23. J. Lang, C. Tondre, R. Zana, R. Bauer, H. Hoffmann, W. Ulbricht, J. Phys. Chem., 1975, 79, 276; DOI: https://doi.org/10.1021/j100570a017.

    Article  CAS  Google Scholar 

  24. G. D. J. Phillies, J. Phys. Chem., 1981, 85, 3540; DOI: https://doi.org/10.1021/j150623a034.

    Article  CAS  Google Scholar 

  25. Handbook of Chemistry and Physics, Ed. J. Rumble, CRC Press, Boca Raton, 2022, 1650 pp.

    Google Scholar 

  26. R. Buchner, J. Barthel, Annu. Rep. Prog. Chem., Part C Phys. Chem., 2001, 97, 349; DOI: https://doi.org/10.1039/B101629F.

    Article  CAS  Google Scholar 

  27. N. Axelrod, E. Axelrod, A. Gutina, A. Puzenko, P. B. Ishai, Yu. Feldman, Meas. Sci. Technol., 2004, 15, 755; DOI: https://doi.org/10.1088/0957-0233/15/4/020.

    Article  CAS  Google Scholar 

  28. F. Franks, H. T. Smith, J. Phys. Chem., 1964, 68, 3581; DOI: https://doi.org/10.1021/j100794a024.

    Article  CAS  Google Scholar 

  29. Yu. Mirgorod, Preprint, 2018; https://www.researchgate.net/publication/323771804.

  30. D. Cholakova, K. Tsvetkova, S. Tcholakova, N. Denkov, Colloids Surf. A: Physicochem. Eng. Asp., 2022, 634, 127926; DOI: https://doi.org/10.1016/j.colsurfa.2021.127926.

    Article  CAS  Google Scholar 

  31. D. Cholakova, N. Denkov, Adv. Colloid Interface Sci., 2019, 269, 7; DOI: https://doi.org/10.1016/j.cis.2019.04.001.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was carried out in the framework of the State Assignment to the Kazan Scientific Center of the Russian Academy of Sciences using the facilities (Bruker AVANCE III NMR spectrometer) at the Multiple-Access Spectro-Analytical Center for Physicochemical Studies of the Structure, Properties, and Composition of Substances and Materials at the Kazan Scientific Center of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. F. Zuev.

Ethics declarations

Animal Testing and Ethics

No human or animal subjects were used in this research.

Conflict of Interest

The authors declare no competing interests.

Additional information

Dedicated to the memory of Academician of the Russian Academy of Sciences A. I. Konovalov (1934–2021) on the occasion of his 90th anniversary.

Publisher’s Note. Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 73, No. 3, pp. 529–535, March, 2024.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuev, Y.F., Lunev, I.V., Turanov, A.N. et al. Micellization of sodium dodecyl sulfate in the vicinity of Krafft point: an NMR and dielectric spectroscopy study. Russ Chem Bull 73, 529–535 (2024). https://doi.org/10.1007/s11172-024-4162-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-024-4162-5

Key words

Navigation