Skip to main content
Log in

New lead-free hybrid halometallates with dioctahedral anions synthesized using the template function of homopiperazine

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

New organic-inorganic hybrid halometallates of the general formula (HpipeH2)-[M2X10] · 2H2O, where M = Sb, Bi; X = Br, I; Hpipe is homopiperazine (C5N2H12), were synthesized. The crystal structures of three new compounds, α-(HpipeH2)2[Sb2I10] · 2H2O (1), β-(HpipeH2)2[Sb2I10)]-2H2O (2), and (HpipeH2)2[Bi2Br10] · 2H2O (3), were determined and analyzed in comparison with the previously synthesized analog (HpipeH2)2[Bi2I10] · 2H2O (4). All four compounds have similar crystal structures, in which inorganic dioctahedral [M2X10]4− anions alternate with organic (HpipeH2)2+ cations and water molecules to form 3D systems based on (N)H⋯X, (N)H⋯O, and (O)H⋯X hydrogen bonds. In all structures, the (HpipeH2)2+ cation serves the same template function, forming three (N)H⋯X hydrogen bonds with halogen atoms of the inorganic anion and one (N)H⋯O bond with a water molecule. In going from Sb to Bi and from I to Br, the band gap width increases and reaches 2.89 eV for compound 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Election of the Full Members (Academicians), Corresponding Members, and Foreign Members of the Russian Academy of Sciences, Russ. Chem. Bull., 2022, 71, 1559; DOI: https://doi.org/10.1007/s11172-022-3565-4.

    Article  Google Scholar 

  2. W. L. Leong, Z. E. Ooi, D. Sabba, C. Y. Yi, S. M. Zakeeruddin, M. Graetzel, J. M. Gordon, E. A. Katz, N. Mathews, Adv. Mater., 2016, 28, 2439; DOI: https://doi.org/10.1002/adma.201505480.

    Article  CAS  PubMed  Google Scholar 

  3. Z. Zhu, C. C. Chueh, N. Li, C. Mao, A. K.-Y. Jen, Adv. Mater., 2018, 30, 1703800; DOI: https://doi.org/10.1002/adma.201703800.

    Article  Google Scholar 

  4. Z. Shi, J. Guo, Y. Chen, Q. Li, Y. Pan, H. Zhang, Y. Xia, W. Huang, Adv. Mater., 2017, 29, 1605005; DOI: https://doi.org/10.1002/adma.201605005.

    Article  Google Scholar 

  5. J. Shin, M. Kim, S. Jung, C. S. Kim, J. Park, A. Song, K.-B. Chung, S.-H. Jin, J. H. Lee, M. Song, Nano Res., 2018, 11, 6283; DOI: https://doi.org/10.1007/s12274-018-2151-4.

    Article  CAS  Google Scholar 

  6. N. Dehnhardt, M. Axt, J. Zimmermann, M. Yang, G. Mette, J. Heine, Chem. Mater., 2020, 32, 4801; DOI: https://doi.org/10.1021/acs.chemmater.0c01605.

    Article  CAS  Google Scholar 

  7. T. Y. Shao, Y. Fang, C. He, L. Zhang, K. Wang, Inorg. Chem., 2022, 61, 5184; DOI: https://doi.org/10.1021/acs.inorgchem.1c04032.

    Article  CAS  PubMed  Google Scholar 

  8. V. Morad, S. Yakunin, B. M. Benin, Y. Shynkarenko, M. J. Grotevent, I. Shorubalko, S. C. Boehme, M. V. Kovalenko, Adv. Mater., 2021, 33, 2007355; DOI: https://doi.org/10.1002/adma.202007355.

    Article  CAS  Google Scholar 

  9. D. I. Pavlov, A. A. Rydun, D. G. Samsonenko, V. P. Fedin, A. S. Potapov, Russ. Chem. Bull., 2021, 70, 857; DOI: https://doi.org/10.1007/s11172-021-3159-6.

    Article  CAS  Google Scholar 

  10. W. Bi, N. Leblanc, N. Mercier, P. Auban-Senzier, C. Pasquier, Chem. Mater., 2009, 21, 4099; DOI: https://doi.org/10.1021/cm9016003.

    Article  CAS  Google Scholar 

  11. A. Piecha, A. Bialonska, R. Jakubas, J. Phys.; Condens. Matter, 2008, 20, 325224; DOI: https://doi.org/10.1088/0953-8984/20/32/325224.

    Article  Google Scholar 

  12. A. Gągor, G. Banach, M. Węcławik, A. Piecha-Bisiorek, R. Jakubas, Dalton Trans., 2017, 46, 16605; DOI: https://doi.org/10.1039/c7dt03622a.

    Article  PubMed  Google Scholar 

  13. A. N. Usoltsev, N. A. Korobeynikov, A. S. Novikov, P. E. Plyusnin, B. A. Kolesov, V. P. Fedin, M. N. Sokolov, S. A. Adonin, Inorg. Chem., 2020, 59, 17320; DOI: https://doi.org/10.1021/acs.inorgchem.0c02599.

    Article  CAS  PubMed  Google Scholar 

  14. T. A. Shestimerova, N. A. Yelavik, A. V. Mironov, A. N. Kuznetsov, M. A. Bykov, A. V. Grigorieva, V. V. Utochnikova, L. S. Lepnev, A. V. Shevelkov, Inorg. Chem., 2018, 57, 4077; DOI: https://doi.org/10.1021/acs.inorgchem.8b00265.

    Article  CAS  PubMed  Google Scholar 

  15. T. A. Shestimerova, N. A. Golubev, N. A. Yelavik, M. A. Bykov, A. V. Grigorieva, Z. Wei, E. V. Dikarev, A. V. Shevelkov, Cryst. Growth Design, 2018, 18, 2572; DOI: https://doi.org/10.1021/acs.cgd.8b00179.

    Article  CAS  Google Scholar 

  16. V. Yu. Kotov, A. B. Ilyukhin, A. A. Korlyukov, A. F. Smol’yakov, S. A. Kozyukhin, New J. Chem., 2018, 42, 6354; DOI: https://doi.org/10.1039/C7NJ04948J.

    Article  CAS  Google Scholar 

  17. T. A. Shestimerova, N. A. Golubev, A. V. Grigorieva, M. A. Bykov, Z. Wei, E. V. Dikarev, A. V. Shevelkov, Russ. Chem. Bull., 2021, 70, 39; DOI: https://doi.org/10.1007/s11172-021-3054-1.

    Article  CAS  Google Scholar 

  18. I. D. Gorokh, S. A. Adonin, A. S. Novikov, A. N. Usoltsev, P. E. Plyusnin, I. V. Korolkov, M. N. Sokolov, V. P. Fedin, Polyhedron, 2019, 166, 137; DOI: https://doi.org/10.1016/j.poly.2019.03.041.

    Article  CAS  Google Scholar 

  19. T. A. Shestimerova, A. V. Mironov, M. A. Bykov, A. V. Grigorieva, Z. Wei, E. V. Dikarev, A. V. Shevelkov, Molecules, 2020, 25, 2765; DOI: https://doi.org/10.3390/molecules25122765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. I. Gorokh, S. Adonin, D. Samsonenko, M. Sokolov, V. Fedin, Russ. J. Coord. Chem., 2018, 44, 502; DOI: https://doi.org/10.1134/S1070328418080031.

    Article  CAS  Google Scholar 

  21. K. Mencel, V. Kinzhybalo, R. Jakubas, J. K. Zaręba, P. Szklarz, P. Durlak, M. Drozd, A. Piecha-Bisiorek, Chem. Mater., 2021, 33, 8591; DOI: https://doi.org/10.1021/acs.chemmater.1c01266.

    Article  CAS  Google Scholar 

  22. B. M. Benin, K. M. McCall, M. Wörle, D. Borgeaud, T. Vonderach, K. Sakhatskyi, S. Yakunin, D. Günther, M. V. Kovalenko, Chem. Mater., 2021, 33, 2408; DOI: https://doi.org/10.1021/acs.chemmater.0c04491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. N. A. Yelovik, A. V. Mironov, M. A. Bykov, A. N. Kuznetsov, A. V. Grigorieva, Z. Wei, E. V. Dikarev, A. V. Shevelkov, Inorg. Chem., 2016, 55, 4132; DOI: https://doi.org/10.1021/acs.inorgchem.5b02729.

    Article  CAS  PubMed  Google Scholar 

  24. V. Petricek, M. Dusek, L. Palatinus, Z. Kristallogr., 2014, 229, 345.

    Article  CAS  Google Scholar 

  25. R. A. Doyle, C. R. A. Muchmore, M. Blum, Marccd Software Manual, Rayonix LLC, Evanston (IL, USA), 2011.

    Google Scholar 

  26. T. G. G. Battye, L. Kontogiannis, O. Johnson, H. R. Powell, A. G. W. Leslie, Acta Cryst., 2011, D67, 271.

    Google Scholar 

  27. P. Evans, Acta Cryst., 2006, D62, 72.

    CAS  Google Scholar 

  28. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. App. Cryst. Intern. Un. Cryst., 2015, 48, 3; DOI: https://doi.org/10.1107/S1600576714022985.

    Article  CAS  Google Scholar 

  29. G. Sheldrick, Acta Crystallogr. C, 2015, 71, 3; DOI: https://doi.org/10.1107/S2053229614024218.

    Article  Google Scholar 

  30. P. Kubelka, F. Munk, Z. Tech. Phys. (Leipzig), 1931, 12, 593.

    Google Scholar 

  31. S. A. Adonin, Russ. J. Struct. Chem., 2021, 62, 1345; DOI: https://doi.org/10.1134/S0022476621080126.

    Google Scholar 

  32. S. A. Adonin, I. D. Gorokh, D. G. Samsonenko, O. V. Antonova, I. V. Korolkov, M. N. Sokolov, V. P. Fedin, Inorg. Chim. Acta, 2017, 469, 32; DOI: https://doi.org/10.1016/j.ica.2017.08.058.

    Article  Google Scholar 

  33. S. A. Adonin, I. D. Gorokh, D. G. Samsonenko, A. S. Novikov, I. V. Korolkov, P. E. Plyusnin, M. N. Sokolov, V. P. Fedin, Polyhedron, 2019, 159, 318; DOI: https://doi.org/10.1016/j.poly.2018.12.017.

    Article  CAS  Google Scholar 

  34. S. A. Adonin, M. N. Sokolov, V. P. Fedin, Coord. Chem. Rev., 2016, 312, 1; DOI: https://doi.org/10.1016/j.ccr.2015.10.010.

    Article  CAS  Google Scholar 

  35. C. Hrizi, A. Trigui, Y. Abid, N. Chniba-Boudjada, P. Bordet, S. Chaabouni, J. Solid State Chem., 2001, 184, 3336; DOI: https://doi.org/10.1016/j.jssc.2011.10.004.

    Article  Google Scholar 

  36. T. A. Shestimerova, M. A. Bykov, Z. Wei, E. V. Dikarev, A. V. Shevelkov, Russ. Chem. Bull., 2019, 68, 1520; DOI: https://doi.org/10.1007/s11172-019-2586-0.

    Article  CAS  Google Scholar 

  37. B. Wagner, F. Weigend, J. Heine, Inorg. Chem., 2021, 60, 4352; DOI: https://doi.org/10.1021/acs.inorgchem.1c00096.

    Article  CAS  PubMed  Google Scholar 

  38. T. A. Shestimerova, A. V. Shevelkov, Russ. Chem. Rev., 2018, 87, 28; DOI: https://doi.org/10.1070/RCR4762.

    Article  CAS  Google Scholar 

  39. A. J. Dennington, M. T. Weller, Dalton Trans., 2016, 45, 17974; DOI: https://doi.org/10.1039/C6DT03602C.

    Article  CAS  PubMed  Google Scholar 

  40. B. Saparov, F. Hong, J.-P. Sun, H.-S. Duan, W. Meng, S. Cameron, I. G. Hill, Y. Yan, D. B. Mitzi, Chem. Mater., 2015, 27, 5622; DOI: https://doi.org/10.1021/acs.chemmater.5b01989.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shevelkov.

Additional information

This work was financially supported by the Russian Foundation for Basic Research (Project No. 20-03-00280). The X-ray diffraction studies were performed using the equipment granted by the Lomonosov Moscow State University Program of Development.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Andrei Vladimirovich Shevelkov, born in 1961, Doctor of Chemical Sciences, Head of the Chair of Inorganic Chemistry of the Department of Chemistry of the Lomonosov Moscow State University, expert in the field of chemistry of inorganic functional materials, elected as a Corresponding Member of the Russian Academy of Sciences in 2022 (for more detailed information, see Ref. 1).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 1, pp. 167–176, January, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykov, A.V., Shestimerova, T.A., Bykov, M.A. et al. New lead-free hybrid halometallates with dioctahedral anions synthesized using the template function of homopiperazine. Russ Chem Bull 72, 167–176 (2023). https://doi.org/10.1007/s11172-023-3721-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3721-5

Key words

Navigation