Skip to main content
Log in

Preparation of hypercross-linked composites based on industrial linear polystyrene containing iron nanoparticles and using them in the purification of air and water media from toxic compounds

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A method was developed for the preparation of hypercross-linked composites containing iron nanoparticles from industrial linear polystyrene by crosslinking using FeCl3 as a catalyst (with the subsequent decomposition). The crosslinking reagents were formed from methanol, paraform, sulfuric acid, and sodium halides in dichloroethane. The sorption efficiency of the composites toward hydrogen sulfide, toxic organic solvents, decay products from air, and phenol from aqueous and air media was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Bynum, Lancet, 2001, 357, 1050; DOI: https://doi.org/10.1016/S0140-6736(05)71631-7.

    Article  CAS  PubMed  Google Scholar 

  2. L. Tan, B. Tan, Chem. Soc. Rev., 2017, 46, 3322; DOI: https://doi.org/10.1039/C6CS00851H.

    Article  CAS  PubMed  Google Scholar 

  3. V. Davankov, M. Tsyurupa, Hypercrosslinked Polymeric Networks and Adsorbing Materials, Elsevier, Oxford, 2011, p. 63.

    Book  Google Scholar 

  4. H. Li, C. Shan, Y. Zhang, J. Cai, W. Zhang, B. Pan, ACS Appl. Mater. Interfaces, 2016, 8, 3012; DOI: https://doi.org/10.1021/acsami.5b09832.

    Article  CAS  PubMed  Google Scholar 

  5. W. Yang, Z. Yu, B. Pan, L. Lv, W. Zhang, Chem. Eng. J., 2015, 268, 399; DOI: https://doi.org/10.1016/j.cej.2015.01.051.

    Article  CAS  Google Scholar 

  6. S. E. Lyubimov, L. A. Pavlova, M. V. Sokolovskaya, A. A. Korlyukov, V. A. Davankov, Russ. Chem. Bull., 2019, 68, 1599; DOI: https://doi.org/10.1007/s11172-019-2598-9.

    Article  CAS  Google Scholar 

  7. S. E. Lyubimov, M. V. Sokolovskaya, P. V. Zhemchugov, L. A. Pavlova, S. P. Kutumov, V. A. Davankov, Russ. Chem. Bull., 2020, 69, 712; DOI: https://doi.org/10.1007/s11172-020-2822-7.

    Article  CAS  Google Scholar 

  8. S. E. Lyubimov, A. A. Zvinchuk, A. Yu. Popov, A. A. Korlyukov, L. A. Pavlova, V. A. Davankov, INEOS OPEN, 2020, 3, 109; DOI: https://doi.org/10.32931/io2009a.

    Article  CAS  Google Scholar 

  9. R. T. Drew, S. Laskin, M. Kuschner, N. Nelson, Arch. Environ. Health, 1975, 30, 61; DOI: https://doi.org/10.1080/00039896.1975.10666644.

    Article  CAS  PubMed  Google Scholar 

  10. M. A. Berliner, K. Belecki, J. Org. Chem., 2005, 70, 9618; DOI: https://doi.org/10.1021/jo051344g.

    Article  CAS  PubMed  Google Scholar 

  11. N. Ayawei, A. N. Ebelegi, D. Wankasi, J. Chem., 2017, 2017, 3039817. DOI: https://doi.org/10.1155/2017/3039817.

    Article  Google Scholar 

  12. C. Valderrama, J. I. Barios, A. Farran, J. L. Cortina, Water, Air, Soil Pollut., 2010, 210, 421; DOI: https://doi.org/10.1007/s11270-009-0266-7.

    Article  CAS  Google Scholar 

  13. R. Javadli, A. de Klerk, Appl. Petrochem. Res., 2012, 1, 3; DOI: https://doi.org/10.1007/s13203-012-0006-6.

    Article  CAS  Google Scholar 

  14. L. Wang, R. T. Yang, Front. Chem. Sci. Eng., 2014, 8, 8; DOI: https://doi.org/10.1007/s11705-014-1411-4.

    Article  CAS  Google Scholar 

  15. J. Jiang, A. Chan, S. Ali, A. Saha, K. J. Haushalter, W. Ling, M. Lam, M. Glasheen, J. Parker, M. Brenner, S. B. Mahon, H. H. Patel, R. Ambasudhan, S. A. Lipton, R. B. Pilz, G. R. Boss, Sci. Rep., 2016, 6, 20831; DOI: https://doi.org/10.1038/srep20831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. B. Y. Yu, S.-Y. Kwak, J. Mater. Chem., 2010, 20, 8320; DOI: https://doi.org/10.1039/C0JM01274B.

    Article  CAS  Google Scholar 

  17. A. Monshi, M. R. Foroughi, M. R. Monshi, World J. Nano Sci. Eng., 2012, 2, 154; DOI: https://doi.org/10.4236/wjnse.2012.23020.

    Article  Google Scholar 

  18. A. A. Stepacheva, M. E. Markova, O. V. Manaenkov, A. V. Gavrilenko, A. I. Sidorov, M. G. Sulman, Yu. Yu. Kosivtsov, V. G. Matveeva, E. M. Sulman, Russ. Chem. Bull., 2020, 69, 721; DOI: https://doi.org/10.1007/s11172-020-2824-5.

    Article  CAS  Google Scholar 

  19. J. H. De Boer, B. C. Lippens, B. G. Linsen, J. C. P. Droekhoff, A. van de Heuvel, Th. J. Osinga, J. Colloid Interface Sci., 1966, 21, 405; DOI: https://doi.org/10.1016/0095-8522(66)90006-7.

    Article  CAS  Google Scholar 

  20. E. E. Aynsley, W. A. Campbell, J. Chem. Educ., 1958, 35, 347; DOI: https://doi.org/10.1021/ed035p347.

    Article  Google Scholar 

Download references

Funding

This work was carried out in terms of state assignment No. 075-00697-22-00 of the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Lyubimov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2098–2102, October, 2022.

1066-5285/22/7110-2098 © 2022 Springer Science+Business Media LLC

The authors are grateful to the coworkers of the N. D. Zelinsky Institute of Organic Chemistry (Russian Academy of Sciences) for studies by electron microscopy.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyubimov, S.E., Popov, A.Y., Cherkasova, P.V. et al. Preparation of hypercross-linked composites based on industrial linear polystyrene containing iron nanoparticles and using them in the purification of air and water media from toxic compounds. Russ Chem Bull 71, 2098–2102 (2022). https://doi.org/10.1007/s11172-022-3632-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3632-x

Key words

Navigation