Skip to main content
Log in

Plasma catalytic microwave-assisted pyrolysis of stable substrates to give synthesis gas and hydrocarbons in the presence of cobalt-containing systems

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

An original approach to the carbon dioxide reforming of lignin modified with cobalt(ɪɪ) acetylacetonate is described. The cobalt-containing carbon residue is applicable as a catalyst for the microwave-assisted conversion of fuel oil. The combination of two processes stimulated by microwave irradiation may afford synthesis gas and a wide range of hydrocarbons, important petrochemicals, over a fairly short period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ai, J. Su, M. Wang, J. Jiang, ACS Sustainable Chemistry & Engineering, 2018, 6, 9912–9920; DOI: https://doi.org/10.1021/acssuschemeng.8b01120.

    Article  CAS  Google Scholar 

  2. O. V. Arapova, A. V. Chistyakov, M. V. Tsodikov, I. I. Moiseev, Petroleum Chemistry, 2020, 60, 227–243; DOI: https://doi.org/10.1134/S0965544120030044.

    Article  CAS  Google Scholar 

  3. W. Yunpu, D. Leilei, F. Liangliang, S. Shaoqi, L. Yuhuan, R. Roger, J. Anal. Appl. Pyrolysis, 2016, 119, 104–113; DOI: https://doi.org/10.1016/j.jaap.2016.03.011.

    Article  Google Scholar 

  4. J. Li, J. Tao, B. Yan, L. Jiao, G. Chen, J. Hu, Renewable and Sustainable Energy Reviews, 2021, 150, 111510; DOI: https://doi.org/10.1016/j.rser.2021.111510.

    Article  CAS  Google Scholar 

  5. Y. Ju, Y. Zhu, H. Zhou, S. Ge, H. Xie, Energy Reports, 2021, 7, 523–536; DOI: https://doi.org/10.1016/j.egyr.2021.01.021.

    Article  Google Scholar 

  6. E. P. Feofilova, I. S. Mysyakina, Prikladnaya Biokhimiya i Mikrobiologiya [Applied Biochemistry and Microbiology], 2016, 52, 559–569; DOI: https://doi.org/10.7868/S0555109916060052 (in Russian).

    CAS  Google Scholar 

  7. C. Li, X. Zhao, A. Wang, G. W. Huber, T. Zhang, Chem. Rev., 2015, 115, 11559–11624; DOI: https://doi.org/10.1021/acs.chemrev.5b00155.

    Article  CAS  PubMed  Google Scholar 

  8. Z. I. Geller, Mazut kak toplivo [Fuel oil as a Fuel], Nedra, Moscow, 1965, 496 pp. (in Russian).

    Google Scholar 

  9. https://www.kommersant.ru/doc/5295076.

  10. B. Joffres, D. Laurenti, N. Charon, A. Daudin, A. Quignard, C. Geantet, Oil Gas Sci. Technol.-Revue d’IFP Energies Nouvelles, 2013, 68, 753–763; DOI: https://doi.org/10.2516/ogst/2013132.

    Article  CAS  Google Scholar 

  11. H. G. Song, Y. N. Chun, Energy, 2020, 199, 117482; DOI: https://doi.org/10.1016/j.energy.2020.117482.

    Article  CAS  Google Scholar 

  12. N. A. Pivovarova, Petroleum Chemistry, 2019, 59, 559–569; DOI: https://doi.org/10.1134/S0965544119060148.

    Article  CAS  Google Scholar 

  13. L. M. Kustov, A. L. Kustov, T. Salmi, Mendeleev Commun., 2022, 32, 1–8; DOI: https://doi.org/10.1016/j.mencom.2022.01.001.

    Article  CAS  Google Scholar 

  14. J. Xu, Pretreatment of Biomass, 2015, 157–172; DOI: https://doi.org/10.1016/B978-0-12-800080-9.00009-8.

  15. T. Durka, Van T. Gerven, A. Stankiewicz, Chem. Eng. Technol.: Industrial Chemistry Plant Equipment Process Engineering Biotechnology, 2009, 32, 1301–1312; DOI: https://doi.org/10.1002/ceat.200900207.

    Article  CAS  Google Scholar 

  16. W. Wang, Z. Ma, X. Zhao, S. Liu, L. Cai, S. Shi, Y. Ni, ACS Sustainable Chem. Eng., 2020, 8, 16086–16090; DOI: https://doi.org/10.1021/acssuschemeng.0c04658.

    Article  CAS  Google Scholar 

  17. A. Kokel, C. Schäfer, B. Török, Green Chemistry, 2017, 19, 3729–3751; DOI: https://doi.org/10.1039/C7GC01393K.

    Article  CAS  Google Scholar 

  18. R. N. State, A. Volceanov, P. Muley, D. Boldor, Bioresource Technology, 2019, 277, 179–194; DOI: https://doi.org/10.1016/j.biortech.2019.01.036.

    Article  CAS  PubMed  Google Scholar 

  19. W. Ao, J. Fu, X. Mao, Q. Kang, C. Ran, Y. Liu, J. Dai, Renewable and Sustainable Energy Reviews, 2018, 92, 958–979; DOI: https://doi.org/10.1016/j.rser.2018.04.051.

    Article  CAS  Google Scholar 

  20. M. V. Tsodikov, O. G. Ellert, O. V. Arapova, S. A. Nikolaev, A. V. Chistyakov, Y. V. Maksimov, Chem. Eng. Trans., 2018, 65, 367–372; DOI: https://doi.org/10.3303/CET1865062.

    Google Scholar 

  21. O. V. Arapova, O. G. Ellert, R. S. Borisov, A. V. Chistyakov, A. Y. Vasill’kov, M. V. Tsodikov, A. E. Gekhman, Petroleum Chemistry, 2019, 59, 111–119; DOI: https://doi.org/10.1134/S0965544119010055.

    Article  CAS  Google Scholar 

  22. M. V. Tsodikov, A. V. Chistyakov, G. I. Konstantinov, R. S. Borisov, G. N. Bondarenko, O. V. Arapova, Petroleum Chemistry, 2021, 61, 721–728; DOI: https://doi.org/10.1134/S0965544121070070.

    Article  CAS  Google Scholar 

  23. M. V. Tsodikov, A. V. Chistyakov, G. I. Konstantinov, S. A. Nikolaev, R. S. Borisov, I. C. Levin, Yu. V. Maksimov, A. E. Gekhman, Russ. J. Appl. Chem., 2021, 94, 1513–1524; DOI: https://doi.org/10.1134/S1070427221110069.

    Article  CAS  Google Scholar 

  24. H. M. Nguyen, G. H. Pham, R. Ran, R. Vagnoni, V. Pareek, S. Liu, Catal. Sci. Technol., 2018, 8, 5315–5324; DOI: https://doi.org/10.1039/c8cy01601a.

    Article  CAS  Google Scholar 

  25. H. M. Nguyen, J. Sunarso, C. Li, G. H. Pham, C. Phan, S. Liu, Appl. Catal. A: General, 2020, 599, 117620; DOI: https://doi.org/10.1016/j._pcata.2020.117620.

    Article  Google Scholar 

  26. M. V. Tsodikov, M. A. Perederii, M. S. Karaseva, Yu. V. Maksimov, I. P. Suzdalev, A. A. Gurko, N. K. Zhevago, Ros. nanotekhnologii [Russian Nanotechnologies], 2006, 1, No. 1–2, 153–161 (in Russian).

    Google Scholar 

  27. O. V. Arapova, M. V. Tsodikov, A. V. Chistyakov, S. S. Kurdyumov, A. E. Gekhman, Dokl. Chem., 2017, 475, 184–187; DOI: https://doi.org/10.1134/S0012500817080018.

    Article  CAS  Google Scholar 

  28. M. V. Tsodikov, G. I. Konstantinov, A. V. Chistyakov, O. V. Arapova, M. A. Perederii, Chem. Eng. J., 2016, 292, 315–320; DOI: https://doi.org/10.1016/j.cej.2016.02.028.

    Article  CAS  Google Scholar 

  29. B. Du, C. Chen, Y. Sun, M. Yu, M. Yang, X. Wang, J. Zhou, Fuel Proc. Technol., 2020, 206, 106479; DOI: https://doi.org/10.1016/j.fuproc.2020.106479.

    Article  CAS  Google Scholar 

  30. Y. Zhu, W. Song, R. Yao, Y. Zhao, G. Xu, J. Energy Institute, 2022, 101, 187–193; DOI: https://doi.org/10.1016/j.joei.2022.01.011.

    Article  CAS  Google Scholar 

  31. H. Lin, Q. Li, S. Zhang, L. Zhang, G. Hu, X. Hu, Bioresource Technology, 2022, 351, 127055; DOI: https://doi.org/10.1016/j.biortech.2022.127055.

    Article  CAS  PubMed  Google Scholar 

  32. X. Bo, K. Xiang, Y. Zhang, Y. Shen, S. Chen, Y. Wang, X. Guo, J. Energy Chemistry, 2019, 39, 1–7; DOI: https://doi.org/10.1016/j.jechem.2019.01.006.

    Article  Google Scholar 

  33. Y. N. Chun, H. G. Song, Energy, 2020, 190, 116386; DOI: https://doi.org/10.1016/j.energy.2019.116386.

    Article  CAS  Google Scholar 

  34. G. Xu, H. Jiang, M. Stapelberg, J. Zhou, M. Liu, Q. J. Li, J. Li, Environmental Sci. Technol., 2021, 55, 6239–6247; DOI: https://doi.org/10.1021/acs.est.0c06977.

    Article  CAS  Google Scholar 

  35. H. Zhou, J. Wang, J. Zhuang, Q. Liu, Nanoscale, 2013, 5, 12502–12511; DOI: https://doi.org/10.1039/C3NR04379G.

    Article  CAS  PubMed  Google Scholar 

  36. H. Ji, Z. Li, Y. Yang, S. Hu, Y. Peng, Transport in Porous Media, 2015, 107, 419–433; DOI: https://doi.org/10.1007/s11242-014-0446-9.

    Article  CAS  Google Scholar 

  37. A. S. Adekunle, J. A. Oyekunle, L. M. Durosinmi, O. S. Oluwafemi, D. S. Olayanju, A. S. Akinola, T. A. Ajayeoba, Nano-Structures Nano-Objects, 2020, 21, 100405; DOI: https://doi.org/10.1016/j.nanoso.2019.100405.

    Article  CAS  Google Scholar 

  38. W. T. Cheng, H. W Cheng, AIChE J., 2009, 55, 1383–1389; DOI: https://doi.org/10.1002/aic.11749.

    Article  CAS  Google Scholar 

  39. P. B. Kashid, N. Velhal, G. Kulkarni, P. Kandesar, D. V. Ruikar, V. Puri, J. Mater. Sci.: Materials in Electronics, 2018, 29, 1748–1758; DOI: https://doi.org/10.1007/s10854-017-8083-z.

    CAS  Google Scholar 

  40. M. Ghashghaee, S. Shirvani, Ind. Eng. Chem. Res., 2018, 57, 7421–7430; DOI: https://doi.org/10.1021/acs.iecr.8b00819.

    Article  CAS  Google Scholar 

  41. E. I. Udalov, V. A. Bolotov, Y. Tanashev, Y. D. Chernousov, V. N. Parmon, Theoret. Experim. Chem., 2011, 46, 384–392; DOI: https://doi.org/10.1007/s11237-011-9169-y.

    Article  CAS  Google Scholar 

  42. L. He, G. Liao, H. Li, Q. Ren, S. Hu, H. Han, J. Xiang, J. Energy Institute, 2020, 93, 2497–2504; DOI: https://doi.org/10.1016/j.joei.2020.08.009.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Science Foundation (Project No. 21-13-00457).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Konstantinov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2076–2084, October, 2022.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konstantinov, G.I., Chistyakov, A.V., Bukhtenko, O.V. et al. Plasma catalytic microwave-assisted pyrolysis of stable substrates to give synthesis gas and hydrocarbons in the presence of cobalt-containing systems. Russ Chem Bull 71, 2076–2084 (2022). https://doi.org/10.1007/s11172-022-3629-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3629-5

Key words

Navigation