Skip to main content
Log in

Fluorination of single-walled carbon nanotubes and their application in organic photovoltaic cells as an electron acceptor

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A technique for increasing the degree of dispergation of TUBALL (OCSiAl) single-walled carbon nanotubes (SWCNTs) and for obtaining individual nanotubes was developed. A combination of steps including preliminary purification of the starting SWCNTs from residues of iron-containing catalyst, ultrasonic dispergation of SWCNTs, chemical shortening of SWCNTs, mild fluorination of SWCNTs in BrF3 vapors, centrifugation of a dispersion of SWCNTs in o-dichlorobenzene, and isolation of individual SWCNTs during supernatant filtration was used. This procedure led to a decrease in the average length of SWCNTs and a noticeable decrease in the diameter of their bundles. A considerable portion of a dispersion of SWCNTs separated in this manner consisted of individual nanotubes with diameters of 1–2 nm, in addition, there were bundles with diameters of up to 6 nm. This technique made it possible to obtain photovoltaic cells based on a composite of a conjugated polymer of poly-3-hexylthiophene (P3HT) and fluorinated SWCNTs with a reproducible photovoltaic effect. The energy of the boundary LUMO of fluorinated SWCNTs was determined to be equal to −4.3 eV by cyclic voltammetry. This is suitable for light-induced electron transfer from P3HT and most other donor polymers to fluorinated SWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Bernardo, T. Lopes, D. Lidzey, A. Mendes, Adv. Energy Mater., 2021, 11, 2100342; DOI: https://doi.org/10.1002/aenm.202100342.

    Article  CAS  Google Scholar 

  2. A. Facchetti, Mater. Today, 2013, 16, 123; DOI: https://doi.org/10.1016/j.mattod.2013.04.005.

    Article  CAS  Google Scholar 

  3. K. P. Trainov, R. F. Salikov, Y. N. Luponosov, P. S. Savchenko, A. L. Mannanov, S. A. Ponomarenko, D. N. Plato nov, Y. V. Tomilov, Mendeleev Commun., 2019, 29, 304; DOI: https://doi.org/10.1016/j.mencom.2019.05.021.

    Article  CAS  Google Scholar 

  4. M. A. Besedina, E. A. Smirnova, D. O. Poturai, M. P. Karushev, Russ. Chem. Bull., 2021, 70, 107; DOI: https://doi.org/10.1007/s11172-021-3063-0.

    Article  CAS  Google Scholar 

  5. W. R. Mateker, M. D. McGehee, Adv. Mater., 2017, 29, 1603940; DOI: https://doi.org/10.1002/adma.201603940.

    Article  CAS  Google Scholar 

  6. M. N. Uvarov, M. S. Plekhanov, V. A. Zinoviev, V. V. Yanshole, M. F. Fedin, L. V. Kulik, Chem. Phys. Lett., 2020, 754, 137647; DOI: https://doi.org/10.1016/j.cplett.2020.137647.

    Article  CAS  Google Scholar 

  7. T. Salim, H. W. Lee, L. H. Wong, J. H. Oh, Z. Bao, Y. M. Lam, Adv. Funct. Mater., 2016, 26, 51; DOI: https://doi.org/10.1002/adfm.201503256.

    Article  CAS  Google Scholar 

  8. A. G. Ryabenko, E. A. Dzhavadyan, B. A. Komarov, A. T. Kapasharov, O. M. Zhigalina, Russ. Chem. Bull., 2013, 62, 2245; DOI: https://doi.org/10.1007/s11172-013-0324-6.

    Article  CAS  Google Scholar 

  9. B. I. Kharisov, O. V. Kharissova, A. V. Dimas, RSC Adv., 2016, 6, 68760; DOI: https://doi.org/10.1039/c6ra13187e.

    Article  CAS  Google Scholar 

  10. A. G. Krivenko, N. S. Komarova, A. G. Ryabenko, A. V. Naumkin, E. V. Stenina, L. N. Sviridova, S. N. Sul’yanov, Russ. Chem. Bull., 2011, 60, 1071; DOI: https://doi.org/10.1007/s11172-011-0169-9.

    Article  CAS  Google Scholar 

  11. K. B. Ustinovich, V. V. Ivanov, Y. M. Tokunov, A. A. Loshkarev, N. I. Sapronova, A. M. Vorobei, O. O. Parenago, M. G. Kiselev, Molecules, 2020, 25, 4061; DOI: https://doi.org/10.3390/molecules25184061.

    Article  CAS  Google Scholar 

  12. O. S. Zueva, O. N. Makshakova, B. Z. Idiyatullin, D. A. Faizullin, N. N. Benevolenskaya, A. O. Borovskaya, E. A. Sharipova, Yu. N. Osin, V. V. Salnikov, Yu. F. Zuev, Russ. Chem. Bull., 2016, 65, 1208; DOI: https://doi.org/10.1007/s11172-016-1437-5.

    Article  CAS  Google Scholar 

  13. L. Liu, W. E. Stanchina, G. Li, Appl. Phys. Lett., 2009, 94, 161; DOI: https://doi.org/10.1063/1.3153514.

    Google Scholar 

  14. M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. E. Richardson, N. G. Tassi, Nat. Mater., 2003, 2, 338; DOI: https://doi.org/10.1038/nmat877.

    Article  CAS  Google Scholar 

  15. J. Wang, T. Lei, Polymers, 2020, 12, 1548; DOI: https://doi.org/10.3390/polym12071548.

    Article  CAS  Google Scholar 

  16. T. Tanaka, Y. Urabe, D. Nishide, H. Liu, S. Asano, S. Nishiyama, H. Kataura, Phys. Status Solidi B, 2010, 247, 2867; DOI: https://doi.org/10.1002/pssb.201000368.

    Article  CAS  Google Scholar 

  17. M. Tang, E. Ng, J. Juan, C. Ooi, T. Ling, K. Woon, P. Show, Nanotechnology, 2016, 27, 332002; DOI: https://doi.org/10.1088/0957-4484/27/33/332002.

    Article  CAS  Google Scholar 

  18. A. I. Chernov, E. D. Obraztsova, Phys. Status Solidi B, 2009, 246, 2477; DOI: https://doi.org/10.1002/pssb.200982289.

    Article  CAS  Google Scholar 

  19. S. Qiu, K. Wu, B. Gao, L. Li, H. Jin, Q. Li, Adv. Mater., 2019, 31, 1800750; DOI: https://doi.org/10.1002/adma.201800750.

    Article  CAS  Google Scholar 

  20. M. Adamska, U. Narkiewicz, J. Fluorine Chem., 2017, 200, 179; DOI: https://doi.org/10.1016/j.jfluchem.2017.06.018.

    Article  CAS  Google Scholar 

  21. O. A. Gurova, V. E. Arhipov, V. O. Koroteev, T. Y. Guselnikova, I. P. Asanov, O. V. Sedelnikova, A. V. Okotrub, Phys. Status Solidi B, 2019, 256, 1800742; DOI: https://doi.org/10.1002/pssb.201800742.

    Article  CAS  Google Scholar 

  22. S. Miners, G. Rance, A. La Torre, S. Kenny, A. Khlobystov, J. Mater. Chem. C, 2014, 2, 8357; DOI: https://doi.org/10.1039/C4TC01334D.

    Article  CAS  Google Scholar 

  23. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Synth. Met., 1999, 103, 2555; DOI: https://doi.org/10.1016/S0379-6779(98)00278-1.

    Article  CAS  Google Scholar 

  24. E. S. Kobeleva, D. A. Nevostruev, O. L. Krivenko, M. N. Uvarov, O. A. Gurova, E. V. Lobiak, A. S. Berezin, V. A. Zinovyev, D. E. Utkin, K. M. Degtyarenko, L. V. Kulik, Phys. Status Solidi B, 2020, 257, 2000161; DOI: https://doi.org/10.1002/pssb.202000161.

    Article  CAS  Google Scholar 

  25. B. Thompson, J. Frechet, Angew. Chem. Int. Ed., 2008, 47, 58; DOI: https://doi.org/10.1002/anie.200702506.

    Article  CAS  Google Scholar 

  26. N. Nismy, K. Jayawardena, A. Adikaari, S. Silva, Adv. Mater., 2011, 23, 3796; DOI: https://doi.org/10.1002/adma.201101549.

    PubMed  CAS  Google Scholar 

  27. V. A. Brotsman, V. A. Ioutsi, A. V. Rybalchenko, V. P. Bogdanov, S. A. Sokolov, N. M. Belov, N. S. Lukonina, V. Yu. Markov, I. N. Ioffe, S. I. Troyanov, T. V. Magdesieva, V. A. Trukhanov, D. Yu. Paraschuk, A. A. Goryunkov, Electrochim. Acta, 2016, 219, 130; DOI: https://doi.org/10.1016/j.electacta.2016.09.106.

    Article  CAS  Google Scholar 

  28. Z. El-Moussawi, A. Nourdine, L. Flandin, Appl. Nanosci., 2020; DOI: https://doi.org/10.1007/s13204-020-01561-1.

Download references

Funding

This work was funded by the Russian Foundation for Basic Research (RFBR) and Novosibirsk Region (Project No. 20-43-540025). This research was financially supported by the RFBR (Project No. 18-29-19089mk) and in accordance with the state assignment of V. V. Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences (No. AAAA-A21-121011390038-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Kulik.

Additional information

Dedicated to Academician of the Russian Academy of Sciences R. Z. Sagdeev on the occasion of his 80th birthday.

Published in Russian in Izvestiya AkademiiNauk. Seriya Khimicheskaya, No. 12, pp. 2427–2433, December, 2021.

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobeleva, E.S., Nevostruev, D.A., Uvarov, M.N. et al. Fluorination of single-walled carbon nanotubes and their application in organic photovoltaic cells as an electron acceptor. Russ Chem Bull 70, 2427–2433 (2021). https://doi.org/10.1007/s11172-021-3363-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3363-4

Key words

Navigation