Skip to main content
Log in

Crystal structure features of nitro derivatives of methylcytizine and their relationship with second-order nonlinear optical susceptibility

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The crystal packings of mono- (1) and dinitro derivatives (3) of methylcytizine are analyzed in terms of combined geometric and energy approaches and based on the evaluation of the degree of molecular deformation (a decrease in the molecular volume) in going from the free molecule to the crystal. An increase in the crystal density in going from the mono- to dinitro derivative (1.440 g cm−3 for 1 and 1.528 g cm−3 for 3 at 120 K) is associated with an increase in the density of the isolated molecule rather than with an increase in the packing density, which is almost equal in the crystals of compounds 1 and 3. The second-order nonlinear optical susceptibility of crystals was estimated in terms of a charge model, the prediction error of which is within 10%, being comparable with experimental accuracy. The similarity of the packing densities of compounds 1 and 3 enabled a detailed comparative analysis of the eff ect of the crystal fi eld on the nonlinear optical properties. Both compounds are characterized by relatively high nonlinear optical susceptibility, which is higher than that of urea, a commonly accepted standard, by a factor of 10 and 6.5 for compounds 1 and 3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. R. Dalton, P. A. Sullivan, D. H. Bale, Chem. Rev., 2010, 110, 25.

    Article  CAS  PubMed  Google Scholar 

  2. K. Yu. Suponitsky, T. V. Timofeeva, M. Yu. Antipin, Russ. Chem. Rev., 2006, 75, 457.

    Article  CAS  Google Scholar 

  3. F. Kajzar, J. Zyss, Nonlinear Opt., Quantum Opt., 2012, 43, 31.

    CAS  Google Scholar 

  4. L. E. Johnson, L. R. Dalton, B. H. Robinson, Acc. Chem. Res., 2014, 47, 3258.

    Article  CAS  PubMed  Google Scholar 

  5. T. W. Panunto, Z. Urbanczyk-Lipkowska, R. Johnson, M. C. Etter, J. Am. Chem. Soc., 1987, 109, 7786.

    Article  CAS  Google Scholar 

  6. C. B. Aakeroy, N. R. Champness, C. Janiak, CrystEngComm, 2010, 12, 22.

    Article  CAS  Google Scholar 

  7. I. V. Ananyev, M. G. Medvedev, S. M. Aldoshin, I. L. Eremenko, K. A. Lyssenko, Russ. Chem. Bull., 2016, 65, 1473.

    Article  CAS  Google Scholar 

  8. K. Yu. Suponitsky, N. I. Burakov, A. L. Kanibolotsky, V. A. Mikhailov, J. Phys. Chem. A., 2016, 120, 4179.

    Article  CAS  PubMed  Google Scholar 

  9. G. M. Frankenbach, M. C. Etter, Chem. Mater., 1992, 4, 272.

    Article  CAS  Google Scholar 

  10. K. Yu. Suponitsky, V. G. Tsirelson, D. Feil, Acta Crystallogr., 1999, A55, 821.

    Article  CAS  Google Scholar 

  11. T. Steiner, Angew. Chem., Int. Ed., 2002, 41, 48.

    Article  CAS  Google Scholar 

  12. A. B. Sheremetev, N. V. Palysaeva, M. I. Struchkova, K. Yu. Suponitsky, M. Yu. Antipin, Eur. J. Org. Chem., 2012, 2266.

    Google Scholar 

  13. A. E. Frumkin, N. V. Yudin, K. Yu. Suponitsky, A. B. Sheremetev, Mendeleev Commun., 2018, 28, 135.

    Article  CAS  Google Scholar 

  14. A. Gavezzotti, Acc. Chem. Res., 1994, 27, 309.

    Article  CAS  Google Scholar 

  15. J. D. Dunitz, Chem. Commun., 2003, 545.

    Google Scholar 

  16. W. D. S. Motherwell, H. L. Ammon, J. D. Dunitz, A. Dzyabchenko, P. Erk, A. Gavezzotti, D. W. M. Hofmann, F. J. J. Leusen, J. P. M. Lommerse, W. T. M. Mooij, S. L. Price, H. Scheraga, B. Schweizer, M. U. Schmidt, B. P. van Eijck, P. Verwer, D. E. Williams, Acta Crystallogr., 2002, B58, 647.

    Article  CAS  Google Scholar 

  17. A. M. Reilly, R. I. Cooper, C. S. Adjiman, S. Bhattacharya, A. D. Boese, J. G. Brandenburg, P. J. Bygrave, R. Bylsma, J. E. Campbell, R. Car, D. H. Case, R. Chadha, J. C. Cole, K. Cosburn, H. M. Cuppen, F. Curtis, G. M. Day, R. A. DiStasio Jr, A. Dzyabchenko, B. P. van Eijck, D. M. Elking, J. A. van den Ende, J. C. Facelli, M. B. Ferraro, L. Fusti-Molnar, C.-A. Gatsiou, T. S. Gee, R. de Gelder, L. M. Ghiringhelli, H. Goto, S. Grimme, R. Guo, D. W. M. Hofmann, J. Hoja, R. K. Hylton, L. Iuzzolino, W. Jankiewicz, D. T. de Jong, J. Kendrick, N. J. J. de Klerk, H.-Y. Ko, L. N. Kuleshova, X. Li, S. Lohani, F. J. J. Leusen, A. M. Lund, J. Lv, Y. Ma, N. Marom, A. E. Masunov, P. McCabe, D. P. McMahon, H. Meekes, M. P. Metz, A. J. Misquitta, S. Mohamed, B. Monserrat, R. J. Needs, M. A. Neumann, J. Nyman, S. Obata, H. Oberhofer, A. R. Oganov, A. M. Orendt, G. I. Pagola, C. C. Pantelides, C. J. Pickard, R. Podeszwa, L. S. Price, S. L. Price, A. Pulido, M. G. Read, K. Reuter, E. Schneider, C. Schober, G. P. Shields, P. Singh, I. J. Sugden, K. Szalewicz, C. R. Taylor, A. Tkatchenko, M. E. Tuckerman, F. Vacarro, M. Vasileiadis, A. Vazquez-Mayagoitia, L. Vogt, Y. Wang, R. E. Watson, G. A. de Wijs, J. Yang, Q. Zhu, C. R. Groom, Acta Crystallogr., 2016, B72, 439.

    Google Scholar 

  18. M. C. Etter, K. S. Huang, Chem. Mater., 1992, 4, 824.

    Article  CAS  Google Scholar 

  19. C. P. Brock, J. D. Dunitz, Chem. Mater., 1994, 6, 1118.

    Article  CAS  Google Scholar 

  20. D. S. Chemla, J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals, Acad. Press, Orlando, 1987.

    Google Scholar 

  21. J. L. Oudar, R. Hierle, J. Appl. Phys., 1977, 48, 2699.

    Article  CAS  Google Scholar 

  22. T. V. Timofeeva, V. N. Nesterov, F. M. Dolgushin, Y. V. Zubavichus, J. T. Goldshtein, D. M. Sammeth, R. D. Clark, B. Penn, M. Yu. Antipin, Cryst. Eng., 2001, 3, 263.

    Article  Google Scholar 

  23. M. V. Makarov, V. P. Dyadchenko, K. Yu. Suponitsky, D. A. Lemenovskii, M. Yu. Antipin, Russ. Chem. Bull., 2004, 53, 1942.

    Article  CAS  Google Scholar 

  24. A. F. Smol’yakov, V. A. Karnoukhova, S. V. Osintseva, P. R. Petrova, A. V. Koval’skaya, I. P. Tsypysheva, Pharm. Chem., 2017, 50, 826.

    Article  CAS  Google Scholar 

  25. I. P. Tsypysheva, A. V. Koval’skaya, A. N. Lobov, E. A. Nikolaeva, M. S. Yunusov, Chem. Nat. Compd., 2013, 49, 902.

    Article  CAS  Google Scholar 

  26. E. G. Perez, C. Mendez-Galvez, B. K. Cassels, Nat. Prod. Rep., 2012, 29, 55.

    Article  CAS  Google Scholar 

  27. O. B. Kazakova, D. V. Kazakov, E. Yu. Yamansarov, N. I. Medvedeva, G. A. Tolstikov, K. Yu. Suponitsky, D. E. Arkhipov, Tetrahedron Lett., 2011, 52, 976.

    Article  CAS  Google Scholar 

  28. I. P. Tsypysheva, A. N. Lobov, A. V. Kovalskaya, V. I. Vinogradova, K. Yu. Suponitsky, S. L. Khursan, M. S. Yunusov, Tet. Assym., 2013, 24, 1318.

    Article  CAS  Google Scholar 

  29. V. V. Shelkovnikov, I. Yu. Kargapolova, N. A. Orlova, S. V. Korotaev, A. E. Simanchuk, S. L. Mikerin, Russ. Chem. Bull., 2019, 58, 92.

    Article  CAS  Google Scholar 

  30. I. P. Tsypysheva, A. V. Koval’skaya, A. N. Lobov, V. V. Zarubaev, L. A. Karpinskaya, I. A. Petrenko, E. A. Nikolaeva, A. A. Shtro, M. S. Yunusov, Chem. Nat. Compd., 2012, 48, 1042.

    Article  CAS  Google Scholar 

  31. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA, 2009.

    Google Scholar 

  32. G. M. Sheldrick, Acta Crystallogr., 2015, C71, 3.

    Google Scholar 

  33. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, K. N. Kudin, Jr., J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford, 2004.

    Google Scholar 

  34. J. Sponer, K. E. Riley, P. Hobza, PCCP, 2008, 10, 2595.

    Article  CAS  PubMed  Google Scholar 

  35. K. Yu. Suponitsky, K. A. Lyssenko, M. Yu. Antipin, N. S. Aleksandrova, A. B. Sheremetev, T. S. Novikova, Russ. Chem. Bull., 2009, 58, 2129.

    Article  CAS  Google Scholar 

  36. Y. Zhao, N. E. Schultz, D. G. Truhlar, J. Chem. Theory Comput., 2006, 2, 364.

    Article  PubMed  CAS  Google Scholar 

  37. A. O. Dmitrienko, V. A. Karnoukhova, A. A. Potemkin, M. I. Struchkova, I. A. Kryazhevskikh, K. Yu. Suponitsky, Chem. Heterocyc. Compd., 2017, 53, 532.

    Article  CAS  Google Scholar 

  38. R. F. W. Bader, Atoms in Molecules. A Quantum Theory, Clarendon Press, Oxford, 1990].

    Google Scholar 

  39. T. A. Keith, 2014, AIMAll, Version 14.11.23. TK Gristmill Software, Overland Park KS, USA (http://aim.tkgristmill.com).

    Google Scholar 

  40. Yu. V. Zefirov, P. M. Zorkii, Russ. Chem. Rev., 1995, 64, 415.

    Article  Google Scholar 

  41. P. M. Zorkii, V. K. Bel’skii, S. G. Lazareva, M. A. Porai-Koshits, J. Struct. Chem., 1967, 8, 267.

    Article  Google Scholar 

  42. J. D. Dunitz, A. Gavezzotti, Cryst. Growth. Des., 2005, 5, 2180.

    Article  CAS  Google Scholar 

  43. O. V. Shishkin, V. V. Dyakonenko, A. V. Maleev, CrystEngComm., 2012, 14, 1795.

    Article  CAS  Google Scholar 

  44. A. Romanova, K. Lyssenko, I. Ananyev, J. Computat. Chem., 2018, 39, 1607.

    Article  CAS  Google Scholar 

  45. A. B. Sheremetev, B. V. Lyalin, A. M. Kozeev, N. V. Palysaeva, M. I. Struchkova, K. Yu. Suponitsky, RSC Adv., 2015, 5, 37617.

    Article  CAS  Google Scholar 

  46. A. A. Gidaspov, V. V. Bakharev, K. Yu. Suponitsky, V. G. Nikitin, A. B. Sheremetev, RSC Adv., 2016, 6, 104325.

    Article  CAS  Google Scholar 

  47. I. L. Dalinger, A. K. Shakhnes, K. A. Monogarov, K. Y. Suponitsky, A. B. Sheremetev, Mendeleev Commun., 2015, 25, 429.

    Article  CAS  Google Scholar 

  48. I. V. Glukhov, K. A. Lyssenko, A. A. Korlyukov, M. Yu. Antipin, Russ. Chem. Bull., 2005, 54, 547.

    Article  CAS  Google Scholar 

  49. D. G. Golovanov, K. A. Lyssenko, M. Yu. Antipin, Y. S. Vygodskii, E. I. Lozinskaya, A. S. Shaplov, CrystEngComm, 2005, 7, 53.

    Article  CAS  Google Scholar 

  50. R. S. Rowland, R. Taylor, J. Phys. Chem., 1996, 100, 7384.

    Article  CAS  Google Scholar 

  51. I. L. Dalinger, A. V. Kormanov, K. Yu. Suponitsky, N. V. Muravyev, A. B. Sheremetev, Chem. Asian J., 2018, 13, 1165.

    Article  CAS  PubMed  Google Scholar 

  52. I. L. Dalinger, O. V. Serushkina, N. V. Muravyev, D. B. Meerov, E. A. Miroshnichenko, T. S. Kon’kova, K. Yu. Suponitsky, M. V. Vener, A. B. Sheremetev, J. Mater. Chem. A, 2018, 6, 18669.

    Article  CAS  Google Scholar 

  53. A. A. Larin, N. V. Muravyev, A. N. Pivkina, K. Yu. Suponitsky, I. V. Ananyev, D. V. Khakimov, L. L. Fershtat, N. N. Makhova, Chem. Eur. J., 2019, 25, 4225.

    Article  CAS  PubMed  Google Scholar 

  54. N. V. Palysaeva, A. G. Gladyshkin, I. A. Vatsadze, K. Yu. Suponitsky, D. E. Dmitriev, A. B. Sheremetev, Org. Chem. Front., 2019, 6, 249.

    Article  CAS  Google Scholar 

  55. K. Yu. Suponitsky, S. Tafur, A. E. Masunov, J. Chem. Phys., 2008, 129, 044109.

    Article  PubMed  CAS  Google Scholar 

  56. K. Yu. Suponitsky, Y. Liao, A. E. Masunov, J. Phys. Chem. A, 2009, 113, 10994.

    Article  CAS  PubMed  Google Scholar 

  57. K. Yu. Suponitsky, A. E. Masunov, M. Yu. Antipin, Mendeleev. Commun., 2009, 19, 311.

    Article  CAS  Google Scholar 

  58. M. H. Cardenuto, B. Champagne, PCCP, 2015, 17, 23634.

    Article  CAS  Google Scholar 

  59. N. I. Shalin, O. D. Fominykh, M. Yu. Balakina, Chem. Phys. Lett., 2019, 717, 21.

    Article  CAS  Google Scholar 

  60. K. Yu. Suponitsky, A. E. Masunov, M. Yu. Antipin, Mendeleev. Commun., 2008, 18, 265.

    Article  CAS  Google Scholar 

  61. A. V. Vologzhanina, A. A. Golovanov, D. M. Gusev, I. S. Odin, R. A. Apreyan, K. Yu. Suponitsky, Cryst. Growth Des., 2014, 14, 4402.

    Article  CAS  Google Scholar 

  62. J. L. Oudar, J. Zyss, Phys. Rev. A, 1982, 26, 2016.

    Article  CAS  Google Scholar 

  63. J. Zyss, J. L. Oudar, Phys. Rev. A, 1982, 26, 2028.

    Article  CAS  Google Scholar 

  64. A. V. Arzumanyan, I. K. Goncharova, R. A. Novikov, S. A. Milenin, K. L. Boldyrev, P. N. Solyev, Y. V. Tkachev, A. D. Volodin, A. F. Smol’yakov, A. A. Korlyukov, A. M. Muzafarov, Green Chem., 2018, 20, 1467.

    Article  CAS  Google Scholar 

  65. A. I. Kitaigorodskii, Organic Chemical Crystallography, Consultants Bureau, New York, 1961.

    Google Scholar 

  66. A. B. Sheremetev, N. S. Aleksandrova, N. V. Palysaeva, M. I. Struchkova, V. A. Tartakovsky, K. Y. Suponitsky, Chem. Eur. J., 2013, 19, 12446.

    Article  CAS  PubMed  Google Scholar 

  67. A. B. Sheremetev, I. L. Yudin, N. V. Palysaeva, K. Yu. Suponitsky, J. Heterocycl. Chem., 2012, 49, 394.

    Article  CAS  Google Scholar 

  68. I. L. Dalinger, K. Yu. Suponitsky, T. K. Shkineva, D. B. Lempert, A. B. Sheremetev, J. Mater. Chem. A, 2018, 6, 14780.

    Article  CAS  Google Scholar 

  69. A. O. Dmitrienko, I. V. Ananyev, Russ. Chem. Bull., 2019, 68, 1.

    Article  CAS  Google Scholar 

  70. Yu. V. Nelyubina, I. V. Glukhov, M. Yu. Antipin, K. A. Lyssenko, Chem. Commun., 2010, 46, 3469.

    Article  CAS  Google Scholar 

  71. A. A. Gidaspov, V. A. Zalomlenkov, V. V. Bakharev, V. E. Parfenov, E. V. Yurtaev, M. I. Struchkova, N. V. Palysaeva, K. Yu. Suponitsky, D. B. Lempert, A. B. Sheremetev, RSC Adv., 2016, 6, 34921.

    Article  CAS  Google Scholar 

  72. M. Gobel, T. M. Klapotke, Adv. Funct. Mater., 2009, 19, 347.

    Article  CAS  Google Scholar 

  73. K. Yu. Suponitsky, K. A. Lyssenko, I. V. Ananyev, A. M. Kozeev, A. B. Sheremetev, Cryst. Growth Des., 2014, 14, 4439.

    Article  CAS  Google Scholar 

  74. Y. Tang, C. He, G. H. Imler, D. A. Parrish, J. M. Shreeve, J. Mater. Chem. A, 2018, 6, 5136.

    Article  CAS  Google Scholar 

  75. A. B. Sheremetev, V. L. Korolev, A. A. Potemkin, N. S. Aleksandrova, N. V. Palysaeva, T. H. Hoang, V. P. Sinditskii, K. Yu. Suponitsky, Asian J. Org. Chem., 2016, 5, 1388.

    Article  CAS  Google Scholar 

  76. I. L. Dalinger, O. V. Serushkina, D. L. Lipilin, A. A. Anisimov, K. Yu. Suponitsky, A. B. Sheremetev, ChemPlusChem, 2019, 84, 802.

    Article  CAS  PubMed  Google Scholar 

  77. K. Yu. Suponitsky, A. E. Masunov, J. Chem. Phys., 2013, 139, 094310.

    Article  PubMed  CAS  Google Scholar 

  78. T. Seidler, K. Stadnicka, B. Champagne, Adv. Opt. Mater., 2014, 2, 1000.

    Article  CAS  Google Scholar 

  79. L. G. Koreneva, V. F. Zolin, B. L. Davydov, Nelineinaya optika molekulyarnykh kristallov [Nonlinear Optics of Molecular Crystals], Nauka, Moscow, 1985 (in Russian).

    Google Scholar 

  80. A. Willetts, J. E. Rice, D. M. Burland, D. P. Shelton, J. Chem. Phys., 1992, 97, 7590.

    Article  CAS  Google Scholar 

  81. Handbook of Advanced Electronic and Photonic Materials and Devices. Nonlinear Optical Materials, Ed. H. S. Nalwa, Academic Press, San Diego, 2000, Vol. 9.

  82. I. L. Dalinger, I. A. Vatsadze, T. K. Shkineva, A. V. Kormanov, M. I. Struchkova, K. Yu. Suponitsky, A. A. Bragin, K. A. Monogarov, V. P. Sinditskii, A. B. Sheremetev, Chem. Asian J., 2015, 10, 1987.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Smol’yakov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 0148–0157, January, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smol’yakov, A.F., Osintseva, S.V., Mamin, E.A. et al. Crystal structure features of nitro derivatives of methylcytizine and their relationship with second-order nonlinear optical susceptibility. Russ Chem Bull 69, 148–157 (2020). https://doi.org/10.1007/s11172-020-2736-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-2736-4

Key words

Navigation