Skip to main content
Log in

Glycosylation in flow: effect of the flow rate and type of the mixer

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

An Erratum to this article was published on 01 December 2019

This article has been updated

Abstract

The influence of the flow rate and the mode of mixing of reagent solutions on the result of glycosylation of isopropyl alcohol with glycooxazoline in 1,2-dichloroethane in the presence of (±)-camphor-10-sulfonic acid was studied. No reaction products were observed at low flow rates (⩽0.043 mL h−1) when using two Comet X-01 micromixers. Under these conditions, the disaggregation of supramers of the reagents is apparently inefficient for the reaction between them to occur. However, when one of the Comet X-01 micromixers was replaced with a T-shaped adapter (at the same flow rate), the expected reaction products, glycoside and glycal, appeared in the reaction mixture. This apparently suggests a higher disaggregation of the supramers reagents under these conditions, which allows the chemical reaction between them to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 06 February 2020

    To the article “Glycosylation in flow: effect of the flow rate and type of the mixer,” by I. V. Myachin, A. V. Orlova, and L. O. Kononov, Vol. <Emphasis Type="Bold">68</Emphasis>, No. 11, pp. 2126–2129, November, 2019.

    In the original international version of the article, one phrase was omitted.

    To be added:

    This work was financially supported by the Russian Science Foundation (Project No. 16-13-10244-P).

References

  1. T. Fukuyama, T. Rahman, M. Sato, I. Ryu, Synlett, 2008, 151–163; DOI: https://doi.org/10.1055/s-2007-1000884.

    Article  Google Scholar 

  2. A. Kirschning, Beilstein J. Org. Chem., 2009, 5, 2; DOI: https://doi.org/10.3762/bjoc.5.15.

    Article  Google Scholar 

  3. X. Y. Mak, P. Laurino, P. H. Seeberger, Beilstein J. Org. Chem., 2009, 5, 11; DOI: https://doi.org/10.3762/bjoc.5.19.

    Article  Google Scholar 

  4. D. Webb, T. F. Jamison, Chem. Sci., 2010, 1, 675–680; DOI: https://doi.org/10.1039/c0sc00381f.

    Article  CAS  Google Scholar 

  5. J. I. Yoshida, Chem. Rec., 2010, 10, 332–341; DOI: https://doi.org/10.1002/tcr.201000020.

    Article  CAS  Google Scholar 

  6. C. Wiles, P. Watts, Chem. Commun., 2011, 47, 6512–6535; DOI: https://doi.org/10.1039/c1cc00089f.

    Article  CAS  Google Scholar 

  7. A. Puglisi, M. Benaglia, R. Porta, F. Coccia, Curr. Organocatal., 2015, 2, 79–101; DOI: https://doi.org/10.2174/2213337202666150513002701.

    Article  CAS  Google Scholar 

  8. K. Tanaka, K. Fukase, Beilstein J. Org. Chem., 2009, 5, 11; DOI: https://doi.org/10.3762/bjoc.5.40.

    Article  Google Scholar 

  9. Y. Uchinashi, M. Nagasaki, J. Zhou, K. Tanaka, K. Fukase, Org. Biomol. Chem., 2011, 9, 7243–7248; DOI: https://doi.org/10.1039/c1ob06164j.

    Article  CAS  Google Scholar 

  10. Y. Uchinashi, K. Tanaka, Y. Manabe, Y. Fujimoto, K. Fukase, J. Carbohydr. Chem., 2014, 33, 55–67; DOI: https://doi.org/10.1080/07328303.2014.880116.

    Article  CAS  Google Scholar 

  11. K. Tanaka, Y. Mori, K. Fukase, J. Carbohydr. Chem., 2009, 28, 1–11; DOI: https://doi.org/10.1080/07328300802571129.

    Article  CAS  Google Scholar 

  12. K. Tanaka, K. Fukase, Org. Process Res. Dev., 2009, 13, 983–990; DOI: https://doi.org/10.1021/op900084f.

    Article  CAS  Google Scholar 

  13. K. Fukase, A. Shimoyama, Y. Manabe, J. Synth. Org. Chem. Jpn, 2015, 73, 452–459; DOI: https://doi.org/10.5059/yukigoseikyokaishi.73.452.

    Article  CAS  Google Scholar 

  14. M. Nagasaki, Y. Manabe, N. Minamoto, K. Tanaka, A. Silipo, A. Molinaro, K. Fukase, J. Org. Chem., 2016, 81, 10600–10616; DOI: https://doi.org/10.1021/acs.joc.6b02106.

    Article  CAS  Google Scholar 

  15. Y. Khorlin, M. L. Shul’man, S. E. Zurabyan, I. M. Privalova, Y. L. Kopaevich, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1968, 17, 231; DOI: https://doi.org/10.1007/BF00914687.

    Article  Google Scholar 

  16. A. Y. Khorlin, M. L. Shul’man, S. E. Zurabyan, I. M. Privalova, Y. L. Kopaevich, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1968, 17, 1987–1990; DOI: https://doi.org/10.1007/BF00904999.

    Article  Google Scholar 

  17. W. P. Stöckl, H. Weidmann, J. Carbohydr. Chem., 1989, 8, 169–198; DOI: https://doi.org/10.1080/07328308908048003.

    Article  Google Scholar 

  18. J. Banoub, P. Boullanger, D. Lafont, Chem. Rev., 1992, 92, 1167–1195; DOI: https://doi.org/10.1021/cr00014a002.

    Article  CAS  Google Scholar 

  19. M. Imoto, H. Yoshimura, M. Yamamoto, T. Shimamoto, S. Kusumoto, T. Shiba, Bull. Chem. Soc. Jpn, 1987, 60, 2197–2204; DOI: https://doi.org/10.1246/bcsj.60.2197.

    Article  CAS  Google Scholar 

  20. C. D. Warren, R. W. Jeanloz, Carbohydr. Res., 1977, 53, 67–84; DOI: https://doi.org/10.1016/S0008-6215(00)85455-5.

    Article  CAS  Google Scholar 

  21. C. D. Warren, R. W. Jeanloz, G. Strecker, Carbohydr. Res., 1981, 92, 85–101; DOI: https://doi.org/10.1016/S0008-6215(00)85984-4.

    Article  Google Scholar 

  22. H. Christensen, M. S. Christiansen, J. Petersen, H. H. Jensen, Org. Biomol. Chem., 2008, 6, 3276–3283; DOI: https://doi.org/10.1039/b807064d.

    Article  CAS  Google Scholar 

  23. H. Hohgardt, W. Dietrich, H. Kühne, D. Müller, D. Grzelak, P. Welzel, Tetrahedron, 1988, 44, 5771–5790; DOI: https://doi.org/10.1016/S0040-4020(01)81436-8.

    Article  CAS  Google Scholar 

  24. R. Hayama, T. Koyama, T. Matsushita, K. Hatano, K. Matsuoka, Molecules, 2018, 23; DOI: https://doi.org/10.3390/molecules23112875.

    Article  Google Scholar 

  25. W. L. Salo, H. G. Fletcher, Jr., J. Org. Chem., 1969, 34, 3189–3191; DOI: https://doi.org/10.1021/jo01262a082.

    Article  CAS  Google Scholar 

  26. L. O. Kononov, RSC Adv., 2015, 5, 46718–46734; DOI: https://doi.org/10.1039/c4ra17257d.

    Article  CAS  Google Scholar 

  27. M. Sedlák, J. Phys. Chem. B, 2006, 110, 4329–4338; DOI: https://doi.org/10.1021/jp0569335.

    Article  Google Scholar 

  28. M. Sedlák, J. Phys. Chem. B, 2006, 110, 4339–4345; DOI: https://doi.org/10.1021/jp056934x.

    Article  Google Scholar 

  29. M. Sedlák, J. Phys. Chem. B, 2006, 110, 13976–13984; DOI: https://doi.org/10.1021/jp061919t.

    Article  Google Scholar 

  30. M. O. Nagornaya, A. V. Orlova, E. V. Stepanova, A. I. Zinin, T. V. Laptinskaya, L. O. Kononov, Carbohydr. Res., 2018, 470, 27–35; DOI: https://doi.org/10.1016/j.carres.2018.10.001.

    Article  CAS  Google Scholar 

  31. G. V. Lagodzinskaya, T. V. Laptinskaya, A. I. Kazakov, L. S. Kurochkina, G. B. Manelis, Russ. Chem. Bull., 2016, 65, 984–992; DOI: https://doi.org/10.1007/s11172-016-1401-4.

    Article  CAS  Google Scholar 

  32. G. V. Lagodzinskaya, T. V. Laptinskaya, A. I. Kazakov, Russ. Chem. Bull., 2018, 67, 1838–1850; DOI: https://doi.org/10.1007/s11172-018-2297-y.

    Article  CAS  Google Scholar 

  33. G. V. Lagodzinskaya, T. V. Laptinskaya, A. I. Kazakov, Russ. Chem. Bull., 2018, 67, 2212–2223; DOI: https://doi.org/10.1007/s11172-018-2358-2.

    Article  CAS  Google Scholar 

  34. D. J. Chambers, G. R. Evans, A. J. Fairbanks, Tetrahedron, 2004, 60, 8411–8419; DOI: https://doi.org/10.1016/j.tet.2004.07.005.

    Article  CAS  Google Scholar 

  35. J. E. Heidlas, W. J. Lees, P. Pale, G. M. Whitesides, J. Org. Chem., 1992, 57, 146–151; DOI: https://doi.org/10.1021/jo00027a028.

    Article  CAS  Google Scholar 

  36. V. Wittmann, D. Lennartz, Eur. J. Org. Chem., 2002, 1363–1367; DOI: https://doi.org/10.1002/1099-0690(200204)2002:8<1363::AID-EJOC1363>3.0.CO;2-#.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. O. Kononov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2126–2129, November, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myachin, I.V., Orlova, A.V. & Kononov, L.O. Glycosylation in flow: effect of the flow rate and type of the mixer. Russ Chem Bull 68, 2126–2129 (2019). https://doi.org/10.1007/s11172-019-2677-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-019-2677-y

Key words

Navigation