Skip to main content
Log in

Electrochemical method in determination of antioxidative activity using ferrocene derivatives as examples

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Electrochemical method for the evaluation of antioxidative activity of compounds based on their reaction with the stable radical, 2,2-diphenyl-1-picrylhydrazyl, was suggested with monitoring of the reaction by cyclic voltammetry (CVA). Antioxidative properties of new ferrocene derivatives Fc(L)R (where Fc is the ferrocenyl, R is the fragment of 2,6-di-tert-butylphenol or its aromatic analog, L is the spacer) were studied. Anodic oxidation of the compounds Fc(L)R, which contain azomethine and 2,6-di-tert-butylphenol moities, proceeds in three steps, that suggests a possibility of intramolecular proton-coupled electron transfer process. Conjugates of ferrocene and 2,6-di-tert-butylphenol are efficient antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Methods in Molecular Biology, Vol. 196, Oxidants and Antioxidatives: Ultrastructure and Molecular Biology Protocols, Ed. D. Armstrong, Humana Press, Inc., Totowa (NJ), 2002, 348 pp.

    Google Scholar 

  2. R. Apak, K. Guclu, B. Demirata, M. Ozyurek, S. E. Celik, B. Bektasoglu, K. I. Berker, D. Ozyurt, Molecules, 2007, 12, 1496.

    Article  CAS  Google Scholar 

  3. G. Litwinenko, K. U. Ingold, J. Org. Chem., 2003, 68, 3433.

    Article  Google Scholar 

  4. E. Baciocchi, A. Calcagni, O. Lanzalinga, J. Org. Chem., 2008, 73, 4110.

    Article  CAS  Google Scholar 

  5. R. Scherer, H. T. Godoy, Food Chem., 2009, 112, 654.

    Article  CAS  Google Scholar 

  6. E. Solon, A. J. Bard, J. Am. Chem. Soc., 1964, 86, 1926.

    Article  CAS  Google Scholar 

  7. E. Solon, A. J. Bard, J. Phys. Chem., 1964, 68, 1144.

    Article  CAS  Google Scholar 

  8. Z. Galus, Teoretyczne Podstawy Electroanalizy Chemicznej, Panstwowe Wydawnictwo Naukowe, Warszawa, 1971.

    Google Scholar 

  9. C. Constentin, Chem. Rev., 2008, 108, 2145.

    Article  Google Scholar 

  10. M. H. V. Hyunn, T. J. Meyer, Chem. Rev., 2007, 107, 5004.

    Article  Google Scholar 

  11. C. Constentin, C. Louault, M. Robert, J.-M. Saveant, J. Am. Chem. Soc., 2008, 130, 15817.

    Article  Google Scholar 

  12. C. Constentin, M. Robert, J.-M. Saveant, J. Electroanal. Chem., 2006, 588, 197.

    Article  Google Scholar 

  13. C. Constentin, D. H. Evans, M. Robert, J.-M. Saveant, P. S. Singh, J. Am. Chem. Soc., 2005, 127, 12490.

    Article  Google Scholar 

  14. C. Constentin, M. Robert, J.-M. Saveant, J. Am. Chem. Soc., 2006, 128, 4552.

    Article  Google Scholar 

  15. C. Constentin, M. Robert, J.-M. Saveant, J. Am. Chem. Soc., 2007, 129, 5870.

    Article  Google Scholar 

  16. M. W. Lehmann, D. H. Evans, J. Phys. Chem. B., 2001, 105, 8877.

    Article  CAS  Google Scholar 

  17. S. Chevion, M. A. Roberts, M. Chevion, Free Radical Biol. Med., 2000, 28, 860.

    Article  CAS  Google Scholar 

  18. B. H. Kipp, C. Faraj, G. Li, D. Njus, Bioelectrochem., 2004, 64, 7.

    Article  CAS  Google Scholar 

  19. D. R. van Staveren, N. Metzler-Nolte, Chem. Rev., 2004, 104, 5931.

    Article  Google Scholar 

  20. N. A. Antonova, V. P. Osipova, M. N. Kolyada, I. V. Smolninov, N. T. Berberova, V. Yu. Tyurin, U Yaokhuań, E. R. Milaeva, Dokl. Akad. Nauk, 2010, 432, 629 [Dokl. Chem. (Engl. Transl.), 2010, 432, 165].

    Google Scholar 

  21. S. Toma, Chem. Zwesti, 1965, 19, 703.

    CAS  Google Scholar 

  22. Weygand-Hilgetag, Organisch-chemische Experimentierkunst, Johann Ambrosius Barth, Leipzig, 1964, 1142 pp.

    Google Scholar 

  23. N. N. Meleshonkova, D. B. Shpakovsky, A. V. Fionov, A. V. Dolganov, T. V. Magdesieva, E. R. Milaeva, J. Organomet. Chem., 2007, 692, 5339.

    Article  CAS  Google Scholar 

  24. Organic Electrochemistry, Eds M. Beizer, H. Lund, Marcel Dekker, New York, 1983, 1166 pp.

    Google Scholar 

  25. P. Zanello, Inorganic Electrochemistry: Theory, Practice and Application, RCS Publ., Cambridge, 2003, p. 579.

    Google Scholar 

  26. M. V. Nekhoroshev, E. P. Ivakhnenko, O. Yu. Okhlobystin, Zh. Org. Khim., 1974, 13, 662 [J. Org. Chem. USSR (Engl. Transl.), 1974, 13, 605].

    Google Scholar 

  27. A. J. Gordon, R. A. Ford, The Chemist’s Companion: a Handbook of Practical Data, Techniques and References, Wiley, New York, 1972, p. 422.

    Google Scholar 

  28. C. K. Mann, K. K. Barnes, Electrochemical Reactions in Nonaqueous Systems, Marcel Dekker, New York, 1970, 560 pp.

    Google Scholar 

  29. E. R. Milaeva, S. I. Filimonova, N. N. Meleshonkova, L. G. Dubova, E. F. Shevtsova, S. O. Bachurin, N. S. Zefirov, Bioinorg. Chem. Appl., 2010, ID 165482, doi: 10. 1155/2010/165482.

  30. E. G. Perevalova, K. I. Grandberg, N. A. Zharikova, S. P. Gubin, A. N. Nesmeyanov, Izv. Akad. Nauk SSSR, Ser. Khim., 1966, 832 [Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.), 1966, 15, 796].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Tyurin.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 633–641, April, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyurin, V.Y., Meleshonkova, N.N., Dolganov, A.V. et al. Electrochemical method in determination of antioxidative activity using ferrocene derivatives as examples. Russ Chem Bull 60, 647–655 (2011). https://doi.org/10.1007/s11172-011-0100-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-011-0100-4

Key words

Navigation